Math 1730	Ma	th	1	7	3	0
------------------	----	----	---	---	---	---

Test #1B

Spring 2013

Name: _____

Rocket Number: _____

Instructor:

Recitation Section (circle): 011 012 021 022 031 032 041 042 961

Photo ID Checked:

(Signature of Proctor or Instructor)

I verify that I am the above named student:_______(Student signature)

Make sure you show **ALL YOUR WORK**. The answer alone will just receive partial credit (unless the question is a one-step question) – you need to demonstrate you know how to calculate the answer.

1. Find each of the given limits:

a. (4 points)
$$\lim_{x \to 4} \sqrt{2x-5} = \sqrt{3}$$

a. (4 points)
$$\lim_{x \to 4} \sqrt{2x - 5} = \sqrt{3}$$
 b. (6 points) $\lim_{x \to 3} \frac{x^2 - 9}{x^2 - 4x + 3} = 3$

- 2. A college club starts selling sweatshirts for \$19 as a fundraiser. If each sweatshirt costs \$12.50 to order and the club has fixed costs of \$221 to design and order the sweatshirts, find each of the following:
- a. (2 points) The cost function

b. (2 points) The revenue function

c. (4 points) The profit function

d. (4 points) The break-even quantity

3. (18 points) Given the following graph, find each of the following:

- a. For what value(s) of x is the function discontinuous? $\frac{-2,2}{}$
- b. For what value(s) of x is does the derivative not exist? $\frac{-2,2,-6}{}$

c.
$$\lim_{x \to -2^{-}} f(x) = 3$$

d.
$$\lim_{x \to -2^+} f(x) = 3$$

e.
$$\lim_{x \to -2} f(x) = _{3}$$

g.
$$\lim_{x \to 2^{-}} f(x) =$$

h.
$$\lim_{x \to 2+} f(x) = _{3}$$

i.
$$\lim_{x \to 2} f(x) = \underline{\text{DNE}}$$

j.
$$f(2) = _{-8}$$

k.
$$\lim_{x \to 5^{-}} f(x) = _{\underline{5}}$$

1.
$$\lim_{x \to 5^+} f(x) = \underline{5}$$

$$\min_{x \to 5} f(x) = \underline{\qquad 5}$$

4. (10 points) Find the equation of a tangent line to the graph of
$$f(x) = 4x^3 - 5x + 10$$
 at the point (-1, 11) or $f' = 12x^2 - 5$ $f'(-1) = 7$ The tangent line is $y - 11 = 7(x + 1)$ or $y = 7x + 18$

5. (10 points) For $f(x) = x^2 - 4x - 3$, calculate f'(x) using the definition of the derivative,

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x+h)-f(x) = (x+h)^2-4(x+h) -3 - (x^2-4x-3) = x^2+2xh+h^2/4x-4h/-3-x^2+4x/+3$$
$$= 2xh + h^2 -4h = h(2x+h-4)$$

$$\frac{f(x+h)-f(x)}{h} = 2x+h-4$$

$$\lim_{h \to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h \to 0} 2x+h -4 = 2x-4 = f'(x)$$

- 6. (10 points) The dollar value of a piece of real estate grows to a value V given by $V = 300,000 + 1000t^2$ where t is in years.
 - a. Find the value of the real estate after 12 years

b. Find the rate of change of the value of the real estate, dV/dt

c. Find the rate of change of the value of the real estate at t = 12

7. Calculate the values of each of the following derivatives:

a. (5 points)
$$f(x) = 5x^7 - 3x^5 + 4x^3 - 2x + 4$$

 $f'(x) = 35x^6 - 15 \times 4 + 12x^2 - 2$

b. (5 points)
$$f(x) = 4x^{-3} + 12x^{1/3}$$

 $f'(x) = -12 \times x^{-2} + 4 \times x^{-2/3}$

c. (5 points)
$$g(x) = \frac{7}{x^3} + 3\sqrt{x} = 7 \text{ x}^{-3} + 3x^{1/2}$$

 $g'(x) = -21 \text{ x}^{-4} + (3/2) \text{ x}^{-1/2}$

d. (5 points)
$$f(x) = (4x^2 - 7x - 5)^6$$

 $f'(x) = 6(4x^2 - 7x - 5)^5$ (8x-7) Extended power rule (not on this test)

e. (5 points) Use the product rule:
$$f(x) = (x^2 - 3x)(5x^3 + 4)$$

 $f'(x) = (5x^3 + 4)(2x-3) + (x^2 - 3x)(15x^2)$ by the product rule

f. (5 points)
$$f(x) = \frac{x^2 + 4x}{5 - 6x^2}$$

$$f'(x) = \frac{(2x+4)(5-6x^2) - (x^2 + 4x)(-12x)}{[5-6x^2]^2}$$
 by the quotient rule