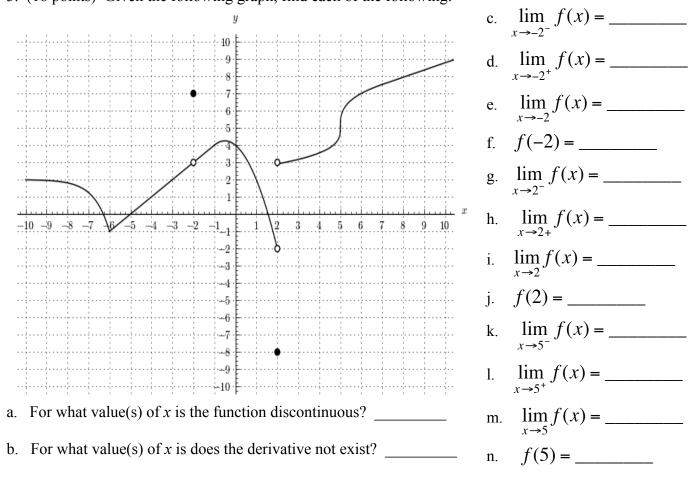
| <u>Math 1730</u>                    | <u>Test #1B</u> |        |       |        |        | <u>Spring 2013</u> |     |     |     |  |
|-------------------------------------|-----------------|--------|-------|--------|--------|--------------------|-----|-----|-----|--|
| Name:                               |                 |        |       |        |        |                    |     |     |     |  |
| Rocket Number:                      |                 |        |       |        |        |                    |     |     |     |  |
| Instructor:                         |                 |        |       |        |        |                    |     |     |     |  |
| <b>Recitation Section (circle):</b> | 011             | 012    | 021   | 022    | 031    | 032                | 041 | 042 | 961 |  |
| Photo ID Checked: (S                | ignatı          | ure of | Proc  | tor of | · Inst | ructo              | r)  |     |     |  |
| I verify that I am the above        | e nam           | ed stu | Ident |        |        | ent sig            |     | re) |     |  |

Make sure you show **ALL YOUR WORK**. The answer alone will just receive partial credit (unless the question is a one-step question) – you need to demonstrate you know how to calculate the answer.

1. Find each of the given limits:

a. (4 points)  $\lim_{x \to 4} \sqrt{2x-5}$  b. (6 points)  $\lim_{x \to 3} \frac{x^2-9}{x^2-4x+3}$ 


2. A college club starts selling sweatshirts for \$19 as a fundraiser. If each sweatshirt costs \$12.50 to order and the club has fixed costs of \$221 to design and order the sweatshirts, find each of the following:

a. (2 points) The cost function

b. (2 points) The revenue function

c. (4 points) The profit function

d. (4 points) The break-even quantity



3. (18 points) Given the following graph, find each of the following:

4. (10 points) Find the equation of a tangent line to the graph of  $f(x) = 4x^3 - 5x + 10$  at the point (-1, 11)

5. (10 points) For  $f(x) = x^2 - 4x - 3$ , calculate f'(x) using the definition of the derivative,  $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ 

- 6. (10 points) The dollar value of a piece of real estate grows to a value V given by  $V = 300,000 + 1000t^2$  where t is in years.
  - a. Find the value of the real estate after 12 years
  - b. Find the rate of change of the value of the real estate, dV/dt
  - c. Find the rate of change of the value of the real estate at t = 12

- 7. Calculate the values of each of the following derivatives:
- a. (5 points)  $f(x) = 5x^7 3x^5 + 4x^3 2x + 4$

b. (5 points) 
$$f(x) = 4x^{-3} + 12x^{1/3}$$

c. (5 points) 
$$g(x) = \frac{7}{x^3} + 3\sqrt{x}$$

d. (5 points) 
$$f(x) = (4x^2 - 7x - 5)^6$$

e. (5 points) Use the product rule:  $f(x) = (x^2 - 3x)(5x^3 + 4)$ 

f. (5 points) 
$$f(x) = \frac{x^2 + 4x}{5 - 6x^2}$$