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Meromorphic Continuation of Scattering
Matrices: Long Range, Stark Case
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Long range quantum mechanical scattering in the presence of a constant electric
field of strength F > 0 is discussed. It is shown that the scattering matrix, as a
function of energy, has a meromorphic continuation to the entire complex plane as
a bounded operator on L��n−1� where n is the space dimension. There is a marked
contrast between this result and the comparable result in the Schrödinger case (F =
0). The scattering matrix is constructed using two Hilbert space wave operators and
time dependent modified wave operators both and the constructions are compared.
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1. Introduction

We shall study the scattering matrix and show that it has a meromorphic extension
to the entire complex plane as a bounded operator in the following context. A non-
relativistic quantum particle in �n is scattered by a long range potential V in the
presence of a constant electric field. If we suppose that the field acts in the direction
e1 = �1� 0� � � � � 0� of �n and is of constant strength F > 0 and make convenient
normalizations then the corresponding Hamiltonian can be written as

H0 = −�+ Fx1 and H = H0 + V�

Here � = �2/�x21 + · · · + �2/�x2n is the Laplacian; H is regarded as a perturbation
of H0 and the scattering is by the potential V in the presence of the linear electric
potential Fx1. H and H0 are referred to as “Stark” or “Stark-effect” operators in
honor of Johannes Stark (1874–1957) who explored the effect of an electric field on
the spectrum of hydrogen and discovered what is now known as the Stark Effect.

It is known, under the assumptions on V stated in the Hypotheses below, and
if F > 0, that the scattering matrix S��� exists for almost all real � (the “free”
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energy) and defines a unitary operator on L2��n−1�. We shall show that S��� has a
meromorphic continuation in � to the entire complex plane as a bounded operator
on L2��n−1�. The continuation is of considerable physical interest because the poles
are “resonances” of the system but what is perhaps of more mathematical interest is
the contrast between this result and the corresponding result in the case F = 0; see
the discussion after the statement of Theorem 2.

The following assumptions on V will be made throughout. Introduce the
notations �x� = �1+ �x�2�1/2 and x− = max�−x� 0	.

Hypotheses. V = V� + Ve where V��x� is C
���n�, real valued and has an analytic

extension to the cone


V = �x ∈ �n � �x1 < −RV � ��x� < �V ��x1�	 (1.1)

for some RV > 0 and �V > 0, and for some positive constants C and 
V

�V��x�� ≤ C��x1�−
V for x ∈ 
V ∪�n (1.2)

lim
�x�→�

V��x� = 0� (1.3)

The other term is Ve = e�V x
−
1 V0 where �V > 0 and V0 is symmetric and H0-compact

and commutes with any operator which is multiplication by a function of x1.

Example. Let V��x� = �x1�−
V �1+ ln�x��−1 and suppose that V0�x� is a real valued
function that can be expressed as a sum of a function in Lp��n�, p > max�2� n/2	
and a bounded function V��x� with lim�x�→� V��x� = 0 then V = V� + e−�V x−1 V0

satisfies the Hypotheses. (Here V0 acts by multiplication.) See Perry (1983, Section
19.1) for a more detailed discussion of Stark operators. The Coulomb potential
V�x� = 1/�x� is a second example if n ≥ 3. However, in the present context, if
F > 0 then the Coulomb potential is “short range” as will be explained below and
Theorems 1 and 2 below are not new for short range scattering; see White (2001).

The results here are new in the case of long range potentials V . Here “long
range” means that the usual (Møller) wave operators (see (1.8) below) of scattering
theory do not exist. In the present context that corresponds, roughly to 0 < 
V ≤ 1/2
but a precise criterion is given in §4; see (4.2). Consequently some generalized notion
of wave operator is needed. The wave operators most convenient to our purposes
are the two Hilbert space wave operators

W±
J = s- lim

t→±�
eit HJe−it H0 (1.4)

where J is a bounded operator on L2��n� to be chosen in the next paragraph and
“s-lim” means the limit is taken in the strong topology.

Following Isozaki, Kitada, and Yajima (Isozaki, 1982; Isozaki and Kitada,
1985a,b) and Kitada and Yajima (1982, 1983) (who used the terminology “time
independent modifier” for J ), we define the Fourier integral operators

J±u�x� =
∫
ei�

±�x���a±�x� ��û���d1�� (1.5)
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where integrals are over �n unless otherwise indicated and d1x is �2��−n/2 times
Lebesgue measure on �n. The phase �± and symbol a± will be introduced in
§2 and §3 respectively and are very similar to those constructed in White (2001).
The operator J is defined so that it agrees with J+ (resp. J−) on outgoing (resp.
incoming) states (see (2.5) below). It is known (White, 1990) that W±

J exists (that
is the limit in (1.4) exists) and is “complete” under more general assumptions than
those in the Hypotheses above.

We shall consider the scattering operator SJ = �W+
J �

∗W−
J . The scattering matrix

SJ��� is defined by restricting SJ to manifolds of constant free energy �. These
manifolds are hyperplanes �n−1 in the present context (F > 0) whereas, for
comparision, they are spheres �n−1 if F = 0. The restriction operator, T0��� is
constructed explicitly after (5.9); it is a mapping from L2��n� to L2��n−1�. Formally
we have �T0��� = T0���H0 and SJ���T0��� = T0���SJ .

Before considering the extension of the scattering matrix we show that the
resolvent operator R�z� = �H − z�−1, has an extension from �± = �z∈� � ±�z> 0	
to � in a certain context. We shall need the notation

VJ = HJ − JH0

for the “effective potential;” later we shall see that VJ is a bounded operator. Also
V+
J (resp. V−

J ) will be a certain restriction of VJ to outgoing (resp. incoming) states
and VJ = V+

J + V−
J ; see (2.2) below.

Theorem 1. For any � > 0, each of the 9 operators

e−�x
−
1 R�z�e−�x

−
1 � e−�x

−
1 R�z�V±

J � �V±
J �

∗R�z�e−�x
−
1 �

�V±
J �

∗R�z�V±
J and �V∓

J �
∗R�z�V±

J

has a meromorphic extension from �+ (resp. �−) to � as a bounded operator on
L2��n�.

The main result of this paper is:

Theorem 2. For almost every real �

SJ���− 1 = −2�iT0���J
∗VJT0���

∗ + 2�iT0���V
∗
J R��+ i0�VJT0���

∗ (1.6)

and SJ��� has a meromorphic extension in � to all of � as a bounded operator on
L2��n−1�. Moreover T0���J

∗VJT0���
∗ has a holomorphic extension to �.

As a consequence of this theorem, a pole of the (extended) scattering matrix
SJ��� must be a pole of the (extended) resolvent R�z�. That is to say that, a pole
of SJ��� which is what physicists refer to as a resonance, is a pole of the resolvent
operator which is what mathematicians define to be a resonance. The converse is
not clear, to the author at least. In the case of Schödinger operators (F = 0), the
two concepts of resonance coincide (Gérard and Martinez, 1989).

Theorems 1 and 2 are extensions to the long range case of earlier works (Hislop
and White, 1999; White, 2001).
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Significantly Theorem 2 differs from the comparable result for Schrödinger
operators (F = 0) of Gérard and Martinez (1989) and Agmon and Klein (1992).
In those results, again the scattering matrix does indeed extend (to a cone in �)
under roughly comparable hypotheses on the potential V . However the extension
is as a bounded operator (on L2��n−1� in their case) only if the potential V is
short range. If V is long range then the extension is as bounded operators on
Gevrey spaces Gs��n−1� for a restricted range of the parameter s with the restriction
depending on the rate of decay of the potential. In Agmon and Klein (1992), very
slowly decaying potentials are considered and for them even the Gevrey spaces are
not adequate for the extension. No such problem arises here in the case F > 0: the
extension exists as a bounded operator in L2��n−1�. Other works on continuation
may be found in Bommier (1994), Sigal (1986), and, in the Start case, Yajima (1981).

The notion of scattering matrix employed by Gérard and Martinez (1989) is
the same as here: SJ��� where J is chosen comparably to here. In Agmon and
Klein (1992), potentials are assumed to be spherically symmetric and the scattering
matrix is defined in terms of generalized eigenfunctions. Certainly some generalized
notion of the scattering matrix of short range scattering is needed to treat long range
scattering and SJ��� suffices but it is natural to ask how SJ��� compares to other,
more historical definitions of scattering matrix. Therefore we will compare SJ��� to
the scattering matrix associated with the Dollard modified wave operators which we
shall now introduce.

Consider therefore the modified wave operators which were applied by Dollard
(1964) to the study of scattering by a Coulomb potential (when F = 0). The
modified wave operators are defined by

�±
� = s- lim

t→±�
eitHe−itH0e−i�t�D� (1.7)

where e−i�t�D� is equivalent by way of the Fourier transform to multiplication by a
functione−i�t��� (� ∈ �n) satisfyingcertain conditions; see§4.Both themodifiedand two
Hilbert spacewave operators (1.4) are generalizations of the Møller wave operators:

�±
0 = W±

1 = s- lim
t→±�

eitHe−itH0 (1.8)

Corresponding to the modified wave operators is the scattering operator defined by
�� = ��+

� �
∗�−

� . The scattering matrix ����� can be defined by restricting �� to a
manifold of free energy � in the same manner as SJ��� was defined by restricting SJ .

How should �t be chosen? In terms of the phase �+ to be defined in §2, we
define �+�x� �� = �+�x� ��− x · � and

�t��� = ∓�+�−R�e1 ± 2t�− Ft2e1�±�− Fte1� (1.9)

if ±t > 0 and R� > 0 is the constant of (2.6) below. Then we have

Theorem 3. The modified wave operators �±
� of (1.7) where the modifier is defined by

(1.9) exist and are complete and moreover

�±
� = W±

J �

The Møller wave operators W±
1 (1.8) exist if 
V > 1/2 or, more precisely, if and only if

condition (4.2) is valid. If 
V > 1/2 then W±
1 = W±

J = �±
� .
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Corollary 4. The two definitions of the scattering matrix ����� = SJ��� coincide. The
scattering matrix has a meromorphic extension to the entire complex plane as a bounded
operator on L2��n−1�. If 
V > 1/2 then the scattering matrix �0��� = S1���, associated
with the Møller wave operators, has such an extension.

Proof of Corollary 4. This result follows from Theorems 2 and 3 immediately. �

The plan for the subsequent sections is this: In §2, we overview differences
between the long range case here, compared to the short range case of White (2001).
Additionally, in §2 the definition of the phase �± of J± is given. The construction
of the symbol a± is outlined in §3. Theorem 3 follows by the method of stationary
phase and a proof is given in §4 assuming Theorems 1 and 2. In §5 groundwork
is laid for the proof of Theorems 1 and 2 and the fundamental analytic extension
result 2 is stated. Theorem 2 is derived from Theorem 1 in §6; Theorem 1 is derived
in §7 with the help of Lemma 7.2. Finally in §8, Lemma 7.2 is derived showing the
use of analytic properties of �± and a±. To avoid lengthy repetitions of arguments
the reader will be referred to White (2001) when no confusion should arise but most
results are stated completely here.

2. Phase

In this section we give the strategy for the proofs of Theorems 1 and 2 of §1 and
highlight the differences between the short range case considered in White (2001)
and the long range case considered here. Then the choice of the phase function of
the operators J± is described in some detail.

The long and short range cases are not so different as might be expected because
even in the short range case (White, 2001), long range methods (such as using the
wave operators W±

J of (1.4)) were used. The same is true of the Schrödinger case
(F = 0): Gérard and Martinez (1989) also use W±

J to treat both long and short range
potentials. Therefore the proof of Theorems 1 and 2 of §1 can parallel that of the
comparable results in White (2001). We shall introduce the “effective” potential in
an effort to explain the differences between the short and long range cases. First
we will need operators which act as projections onto the incoming and outgoing
subspaces. However true projection operators have “bad commutator properties”
and so we proceed as follows. We define �̃ ∈ C���� to be a smooth version of the
Heaviside function:

�̃��1� =
{
1 if x1 > 1/2

0 if x1 < −1/2
(2.1)

and so that �̃��1�
2 + �̃�−�1�2 = 1 and �̃��1� ≥ 0. Our “approximate projections”

onto the incoming (resp. outgoing) state space are defined, for any � > 0, by
�̃�D1/��� resp. �̃�−D1/���� where D1 = −i�/�x1. Therefore �̃�D1/�� is equivalent via
the Fourier transform to multiplication by �̃��1/��. The effective potential is VJ =∑

± V±
J ≡ V+

J + V−
J where V±

J = HJ±�̃�∓D1/��− J±�̃�∓D1/��H0 or

V±
J = �H�J

± − J±H0��̃�∓D1/��+ VeJ
±�̃�∓D1/��∓

iF

�
J±�̃′�∓D1/�� (2.2)
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where H� = H0 + V� and �̃′ is the derivative of �̃. By a formal calculation that can
easily be justified H�J

± − J±H0 is a Fourier integral operator like J± and with the
same phase �± but with symbol

t̃±�x� �� = −2i�x�
±�x� �� · �xa

±�x� ��+ iF
�a±

��1
�x� ��

+ p±�x� ��a±�x� ��− �xa
±�x� �� (2.3)

where

p±�x� �� = ��x�
±�x� ���2 − F

��±

��1
�x� ��+ Fx1 + V��x�− ���2 − i�x�

±�x� ��� (2.4)

We shall want V±
J to be small in some sense and we choose �± in §2 and a± in §3 so

that t̃±�x� �� = O�e−�x−1 �, for some � > 0, provided ∓�1 � 0. A similar choice was
made in the short range case. However, the effective potential also includes terms
like the last term on the right hand side of (2.2) which arises as the commutator of
H0 with the incoming or outgoing approximate projections. The symbols of these
terms are compactly supported in the �1 variable. It will also be convenient if their
operator norms are small as well. Consequently we shall eliminate any cutoff of the
phase and choose the parameter � > 0 in (2.2) to be large. Large � corresponds to
a gradual transition from incoming to outgoing and vice versa. Consequently our
estimates of the phase �+ (resp. �−) must be uniform even into the incoming region
�1 > 0 (resp. outgoing region �1 < 0). Furthermore, since the phase �± is not cutoff,
we are forced to work with J+ and J− separately instead of the operator J of White
(2001). The appropriate definition of J here for the statement of the results in §1 is

J = J+�̃�−D1/��+ J−�̃�D1/��� (2.5)

This completes the overview of the difficulties specific to the long range case.
The results in White (2001) that used the short range assumption 
V > 1/2 in
a significant way are Lemma 5.1 and Theorem 6.2, there; these correspond to
Lemma 5.1 below and Theorem 1 above, respectively.

Next we introduce the phase function �±�x� �� of J±. We set �−�x� �� =
−�+�x�−�� and therefore need only define the outgoing portion �+.
The construction here is the same as in White (2001) but omits any cutoff of the
incoming portion (�1 � 0); it is preferable to cutoff only the symbol and not the
phase.

We define now �+, or more conveniently �+ = �+�x� ��− x · �. The motivation
here is that p+ of (2.4) should decay rapidly in the field direction −e1. As a first
approximation of �+ we set

�1�x� �� =


∫ �

0
V��x + 2t�− Ft2e1�− V��−R�e1 + 2t�⊥ − Ft2e1�dt if 
V ≤ 1/2∫ �

0
V��x + 2t�− Ft2e1�dt if 
V > 1/2

(2.6)

for any fixed R� > RV . (This is the same R� that appears in (1.9).) This definition
corrects the definition of �1 given in White (2001) in the short range case 
V > 1/2.
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The integral defining �1 exists, as an improper Riemann integral, if 
V ≤ 1/2 and
absolutely if 
V > 1/2 and defines a differentiable function of �x� �� whose derivative
can be calculated by differentiating under the integral sign. Introduce a cutoff
function �̃�−��1� ∈ C���� function so that

�̃�−��1��x1� =
{
1 if x1 < 1/2

0 if x1 > 1�

We further define

��x� �� = �̃�−��1���x1���x�1�x� ���2

�2�x� �� = �1�x� ��+
∫ �

0
��x + 2t�− Ft2e1� �− Fte1�dt

This is the same definition as used in White (2001) if ��1 < 0 (that is, in the
important outgoing region) but here we omit any cutoff in �1 in the definition of
�. Define �+ in terms of �2 as follows: let �̃�−��−R0�

be a C���� function which is
�̃�−��−R0�

�x1� = 0 if x1 > −R0 and �̃�−��−R0�
�x1� = 1 if x1 < −R0 − 1. Let

�0�x1� = �x1 + R0 + 1��̃�−��−R0�
��x1�− R0 − 1

and

�+�x1� x⊥� �� = �2��0�x1�� x⊥� ��� (2.7)

This cutoff locks in the analyticity of �+ in the other variables when x1 > −R0 is
fixed. The parameter R0 will be specified very large in §5 below. This completes the
construction of �+ and therefore of �+�x� �� = x · �+ �+�x� ��; their properties are
summarized in the proposition below.

To state that proposition, we first recall that V� is analytic on a cone.
Correspondingly the phase �+ is analytic on


��� R�K� =
{
�x� �� ∈ �2n � ��x� < −��V ��x1 + K���x1 < −R�

���� < max�−�2�V��1� 1	���1 <
√
�F/2��x−1

}
(2.8)

where 0 < � ≤ 1� and provided R > K > 0 are adequately large. Intuitively 1− �,
1/R, 1/K are small positive constants to be chosen as appropriate for the proof
of the proposition below and for the construction of the symbol in §3 below. We
introduce the notation Cm

b ���, 0 ≤ m ≤ � for those functions in Cm��� which are
bounded along with all their partial derivatives up to order m on a set � in �n

or �n.

Proposition 1. Let 0 < �� < 1 be a given constant. Then there is R� and K�,
0<K� <R� so that the phase, �+�x� ��, as defined above, with R0 > R� in (2.7)
adequately large exists and is C���� where � = 
 ∪ ��x� �� ∈ �2n � �1 <

√
�F/2�x−1 	

and 
 ≡ 
���� R��K��. Moreover �+�x� �� is real valued when x and � are; �+ is
holomorphic on � ∩ ��x� �� � �x1 < −R0 − 1	. If −R0 − 1 ≤ �x1 ≤ −R0 (resp. �x1 >
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−R0) is fixed then �+�x� �� is holomorphic in the variables �x⊥� �� on the cross section

�x1� = ��x⊥� �� � �x1� x⊥� �� ∈ 
	 (resp. on 
�−R0�) of 
 . Further, for any �� � ∈ �0

sup��D�
xD

�
���x�

+�x� ��− ��� � �x� �� ∈ �	 = o�1� as R0 → 0� (2.9)

Moreover for any 
�, 0 < 
� < 
V , there is C > 0 so that

��x�
+�x� ��− �� < C��x1�−
����x1� + ���1�2�−1/2� (2.10)

�p�x� ��� < C��x1�−1−
����x1� + ���1�2�−1/2 (2.11)

for all �x� �� ∈ 
 . The functions p and �x�
+ − �, and ���

+ − x, belong to C�
b ��� and

for any real R and all �� � ∈ �n
0

lim
��x����→�

��−��R��x1���D�
xD

�
���x�

+�x� ��− ��� + �D�
xD

�
�p�x� ���� = 0�

the limit being taken inside �. Finally, if 
V > 1/2 in the Hypothesis, then �+�x� ��−
x · � is in C�

b ��� and �+�x� ��− x · � = O���x1�−
V+1/2� on 
 .

Remark. This is (White, 2001, Proposition 2.1) except that � has been enlarged
and the additional conclusion ���

+�x� ��− x is in C�
b ��� has been drawn. Later in

(5.8) we shall need estimates for the first few derivatives of �+�x� �� on the outgoing
region ��1 < � where � > 0 is large. It will be possible to fix � as large as necessary
provided −�x1 is restricted to be suitably large because the estimates above are
uniform on � or 
 .

Remarks on the Proof of the Proposition. We begin with the observation that the
derivatives of V� satisfy, for each multi-index � in �n

0

D�V��x� = O���x1�−
V−���� for x ∈ 
V � (2.12)

When � = 0 this is just the Hypotheses; the general case follows from the Cauchy
integral formula for derivatives of analytic functions and the conical shape of 
V .
Similarly the estimate (2.10) implies the estimate (2.9) on 
 .

The proof is very similar to that of White (2001, Proposition 2.1) and the reader
is referred there. The enlargement of � and 
 means that ��1 may be positive or
more precisely 0 < ��1 <

√
F�x−1 /2 so that �x1 must be compensatingly negative.

In this region the characteristic curves x + 2t�− Ft2e1 have first component x1 +
�21/F − F�t − �1/F�

2 and the real part satisfies �x1 +��21/F < �x1/2 < 0. Therefore
whenever −�x1 > 0, is large enough then the characteristic curve lies entirely
within 
V and they estimates (2.10) and (2.11) can be verified as in White (2001,
Proposition 2.1).

The boundedness of ���
+�x� �� and its derivatives follows by way of White

(2001, Lemma 2.2). The remaining conclusions differ from those in White (2001,
Proposition 2.1) only because � has been enlarged and the verification is the same.

�
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3. Symbol

In this section we complete the specification of the operator J± (1.5) by indicating
the choice of symbol a±, the phase �± being already specified in §2. Unlike the
phase, the symbol is constructed exactly as in White (2001) and so it is only
necessary to recall the relevant results for reference. One critical criterion in the
choice of the symbol a+ of J± is that the symbol t̃+ of equation (2.3) of H�J

+ −
J+H0 will decay to 0 exponentially fast as �x1 → −� in the outgoing regions of
phase space. We shall find it convenient to construct the restriction b of a+ to an
outgoing region of space and to obtain a+ by simply extending b by (3.8) below.
Therefore define t+ by (2.3) with t̃+ and a+ there replaced by t+ and b respectively.
Regrettably b�x� ��, as constructed below, is not analytic in x1 and so, in order to
keep track of the asymptotic behavior of b and its derivatives, we introduce the
notation

�

�xj
= 1

2

(
�

��xj
− i

�

��xj

)
�

�x̄j
= 1

2

(
�

��xj
+ i

�

��xj

)
(3.1)

for 1 ≤ j ≤ n. For � ∈ �n
0 define ��x = ��1/�x

�1
1 � � � ��n/�x�nn ; �̄

�
x is defined similarly.

The symbol b has the following properties.

Proposition 2. For any � , 0 < � < ��, and � > 0 there exist constants R >K > 0,
and a function b�x� �� defined and C� on 
 ≡ 
�� � R �K � ∩ ��x� �� ∈ �2n � ��1 <
−� � such that, for fixed x1, �x1 < −R , b�x� �� is holomorphic in the remaining 2n− 1
variables on (the cross section of) 
 . Also, for all �� � ∈ �n

0 , there is � > 0, and C��� > 0
so that, ∣∣�̄ �

x �
�
xt

+�x� ��
∣∣ ≤ C���e

−���x1�� (3.2)

lim
��x����→�

�̄ �
x �

�
xt

+�x� �� = 0 (3.3)

��x1��1+�1+1/2+
����x1� + ���1�2�1/2��̄ �
x �

�
x�b�x� ��− 1�� ≤ C���� (3.4)

lim
��x����→�

��x1��1+�1+1/2���x1� + ���1�2�1/2
∣∣�̄ �

x �
�
x�b�x� ��− 1�

∣∣ = 0� (3.5)

Moreover, there is ! > 0 (! = !��� �� ��) so that on 
! ≡ 
 ∩ ��x� �� ∈ �2n � ��x⊥�2 +
����2 < !2���1 < 3� /2	 b can written as b = b� + be where b� is analytic in all 2n
variables on 
! and

�̄ �
x �

�
xbe�x� �� < C���e

−���x1�

Here �� and 
� are constants of Proposition 1; 0 < �� < 1, 0 < 
� < 
V .
Proposition 1 is Proposition 3.1 and Corollary 4.2 of White (2001) combined

and a proof can be found there. The symbol a± of J± can be defined in terms of b
as follows. First extend b to the region �x1 > R by replacing b by

1+ �̃�−��−2���x1/R��b�x� ��− 1� (3.6)
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where

�̃�−��−2��x1� =
{
1 if x1 < −5/2

0 if x1 > −3/2
(3.7)

and where R > R is a parameter to be chosen later. The extended function will also
be called b. Let

a+�x� �� = 1+ �̃�−��−2����1/� ��b�x� ��− 1� (3.8)

and similarly define a+
�: replace a+ in (3.8) by a+

� and b by b�. Define a+
e so that

a+ = a+
� + a+

e . Define the incoming analogues of a+ and �+ by “time reversal”:

a−�x� �� = a+�x̄�−�̄� �−�x� �� = −�+�x�−��� (3.9)

(Recall �+ is real valued on �2n.) Define a−
� (resp. a−

e ) similarly replace a± in (3.9)
by a±

� (resp. a±
e ). These definitions agree with those in White (2001); however the

introduction of a combined phase � in White (2001) was misguided.

4. Modified Wave Operators

In this section we shall derive Theorem 3 from Theorem 2. We begin with some
introductory comments about the modified wave operators �� of (1.7). The choice
of �t given in (1.9) is made to facilitate the proof of Theorem 3. The one restriction
is that the resultant wave operators �±

� should “intertwine” H and H0 (Hörmander,
1976). Since that is an immediate consequence of Theorem 3 and the intertwining
principle for W±

J (see Yafaev, 1992) we shall not stop to find a direct proof.
We also recall that �t in the definition of the modified wave operators is not

unique. To be more precise we state the following result of Hörmander (1976,
Theorem 3.1). Suppose that the modified wave operators �±

� and �±
�̃ both exist with

two different choices of �t and �̃t. Then the range of �±
�̃ is contained in the range

of �±
� if and only if exp�−i��t − �̃t�� converges in measure as t → ±� to some

function, " say and, in this event �±
� = �±

�̃ "�D�.
The relationship between the modified wave operators �±

� and the two Hilbert
space wave operators W±

J was studied by Kitada (1987) in the Schrödinger case
(F = 0). There, however the choice of �t is the historical one and is related to
the solution of a certain Hamilton–Jacobi equation; here �t can be chosen as is
convenient for the proof of Theorem 3.

Proof of Theorem 3. Let us begin by assuming the first statement and showing how
it implies the final statement about the Møller wave operators W±

1 = �±
0 � We apply

Hörmander (1976, Theorem 3.1), as stated in the preceding paragraph with �̃t ≡ 0.
Since W±

J is complete, that is the range is equal to the subspace of continuity of H
(White, 1990), and since, �±

0 has range inside the subspace of continuity of H by a
standard argument (Kato, 1980), that result applies and we conclude: �±

0 , exists if
and only if exp�i�t� converges in measure. Recall therefore the definition of �t, t > 0
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(1.9), first in the case that 0 < 
V ≤ 1/2

�t��� = −�+�−Re1 + 2t�− Ft2e1� �− Fte1�

=
∫ �

t
V��−Re1 + 2#�− F#2e1�− V��−Re1 + 2#�⊥ − F#2e1�

+ ��x�1�−Re1 + 2#�− F#2e1� �− F#e1��2 d#
−

∫ t

0
V��−Re1 + 2#�⊥ − F#2e1�d# (4.1)

provided that −R− 2t�1 − Ft2 is sufficiently large and negative so that we are in the
region where �+ = �2. In this way we see that the Møller wave operator W±

1 exists
if and only if

exp
(
i
∫ t

0
V��2#�⊥ − F#2e1�d#

)
converges in measure as t → ±�� (4.2)

(We omit the term −Re1 from the argument to simplify the statement.) A similar
calculation applies when 
V > 1/2, but in this case �t → 0 as t → ±� which implies
that the modified wave operators and Møller wave operators coincide: �±

� = W±
1 .

It remains to prove the first statement of Theorem 3 and that can be done by
a stationary phase argument which we now outline. Suppose that u ∈ L2��n� has
Fourier transform û ∈ C�

0 ��� � ��− �0� < $	� where �0 ∈ �n is arbitrary and $ > 0
is suitably small (as specified below). Such u form a fundamental subset of L2��n�
(that is, their linear span is dense). It will be shown that

Je−itH0u− e−itH0−i�t u → 0 as t → � (4.3)

with convergence in L2��n�. This will show that �+
� exists and is W+

J , which is
known to exist (White, 1990) and this will conclude the proof.

Recall the Avron–Herbst formula (Avron and Herbst, 1977; Perry, 1983)

e−itH0 = e−iF
2t3/3e−itFx1eiD1Ft

2−it�−��

so that

Je−itH0u�x� = e−iF
2t3/3e−itFx1

∫
eix·�+i��x��−Fte1�a�x� �− Fte1�e

i�1Ft
2−it���2 û���d1�

and similarly

e−itH0−i�t�D�u�x� = e−iF
2t3/3e−itFx1

∫
eix·�+i�1Ft

2−it���2−i�t���û��� d1��

To verify 4.3, it suffices to prove that vJ �·� t�− v��·� t� converges to 0 in L2��n� dx�
as t → � where

vJ �x� t� =
∫
eix·�+i��x−Ft

2e1��−Fte1�e−it���
2
a�x − Ft2e1� �− Fte1�û��� d1�

v��x� t� =
∫
eix·�−it���

2−i�t���û��� d1��

We apply stationary phase (?, §7.7) to vJ and v�.



142 White

The stationary phase argument is standard and can be left to the reader but
the properties of the phase that are needed should be stated. Let us introduce the
notation: for each multi-index � ��� ≥ 1

D�����⊥� =
∫ �

0
�2#����D�V�−Re1 + 2#�⊥ − F#2� d#

(The integral may not exist if � = 0 and 
V ≤ 1/2.) Since ��� ≥ 1 the integral exists
and can be differentiated by differentiating “under the integral sign” (so that the
notation is consistent) and the result is a bounded function of �⊥. The required
estimates are: Given K > 0 there is C > 0 so that for all y� � ∈ �n such that �y1� +
��� < K

�D��t���+D�����⊥�� + �D�
��

+�ty − Ft2e1� �− Ft2e1�+D
�
�����⊥�� < Ct−
V

The differentiation is in the �⊥ variables but in fact we can allow also differentiation
in �1 as well if it is understood that ���/��1 = 0. The estimates follow directly from
the (2.12); Proposition 2.1 is not needed here.

Stationary phase applies to each of the integrals, the one defining vJ and the
other v�. The point of stationary phase for the integral defining vJ is � defined
implicitly by the equation

y − 2�+ 1
t
����ty − Ft2e1� �− Fte1� = 0�

denote it by �J�y� t�. The point of stationary phase for v� is ���y� t� defined by

y − 2�− 1
t
��t��� = 0�

It is not difficult to show that �J − �� = O�t−1−
V � locally uniformly in y. Comparing
the stationary phase expansions of vJ and v� in t, it follows that the L2��n� dx�
norm of vJ − v� converges to 0 as t → �. �

5. Analytic Extensions

In this section we establish a fundamental analytic extension result, Proposition 5.2
in preparation for the proof of Theorems 1 and 2. The proof involves computations
with the operators J± and V±

J or more generally

Q±u�x� =
∫
ei�

±�x���q±�x� ��û���d� (5.1)

where the integration is over all of �n and u is in the Schwartz space � ��n� of
smooth functions of rapid decrease. Here the phase �± is fixed as in §2 but the
allowed symbols q± will comprise a wide class in C���2n�. The computations also
will involve pseudo-differential operators: we introduce therefore

%u�x� =
∫∫

ei�x−x
′�·���x� �� x′�u�x′�dx′ d� (5.2)



Meromorphic Continuation 143

with u ∈ � ��n� and the symbol � ∈ C���3n�. We shall also use the notation % =
��X�Dx�X

′� occasionally. It will be convenient to have a criterion that assures that
% is bounded operator on L2��n� and that is given by the Calderón–Vaillancourt
theorem (Calderón and Vaillancourt, 1972), a special case of which will now be
stated. Define for each m = 0� 1� 2� � � �

���m ≡ sup��D�
xD

�
x′D

�
���x� �� x

′��� ��+ � + �� ≤ m� �x� �� x′� ∈ R3n	 (5.3)

The version of the Calderón–Vaillancourt theorem (Calderón and Vaillancourt,
1972) (or see Kumano-go, 1981, p. 224, for example) convenient for the present
applications states that there is a constant C > 0 and integer m0 ∈ �0 so that, for
every � ∈ C���3n�,

�%� ≤ C���m0

where � · � denotes the operator norm on L2��n�.
It is convenient to introduce a class of symbols � for the operators to be

encountered below. For each ! > 0, let

�! = ��x� �� x′� ∈ �3n � ���1� < !� ��x⊥�2 + ��x′⊥�2 + ���⊥�2 < !2�

��x1� < !max�−�x1 − K � 1	� ��x′1� < !max�−�x′1 − K � 1		

where K > 0 is a constant of Proposition 1. For m in �0, let C
m
b ��!� denote the

space of functions ��x� �� x′� which are continuous and bounded along with the
partial derivatives up to order m in the 6n real variables �x, �x etc. For each m∈�0

and !� � > 0, define ��m� !� �� to be the set of all functions � in Cm
b ��!� ∩ C���!�

such that, for each fixed x1 and x′1, ��x1� x⊥� �� x
′
1� x

′
⊥� is analytic in the remaining

3n− 2 complex variables on the cross section of �! ∩ ����1� > �	.
For any R > 0 define ���m�R� !� �� ⊂ ��m� !� �� to include those � which are

analytic in all 3n variables on �! ∩ ��x1 < −R	 ∩ ��x′1 < −R	 ∩ ����1� > �	 and,
for fixed �1, ���1� ≤ �, ���1� < ! are analytic in the 3n− 1 variables �x� �⊥� x′� on
the cross section of �!. Define � = ⋃

��m� !� �� where the union is over all m ∈
�0 and !� � > 0; define �� = ⋃

���m�R� !� �� where this time the union is over all
m ∈ �0 and R� !� � > 0. It will also be convenient to say that a function q±�x� ��
belongs to � (or ��) if the function �x� �� x′� �→ q±�x� �� does.

Examples. We have b� and a±
� belong to ��. To give examples of elements of �

we shall choose, for any X ≥ 0, � > 0, h� and h��X in C���� such that

h��x� = e−�x
−

if �x� > 1� and h��X�x� = h��x + X� (5.4)

so that h��x� is like e
−�x− but smooth at the origin. Then, for any m ∈ �0 and X ≥ 0

there is !� �� � > 0 so that be/h��X , and a±
e /h��X are in ��m� !� ��.

Define further, for any integer 0 ≤ m,

���m = sup���̄ �����x� �� x′�� � �x� �� x′� ∈ �!� �� � ∈ �3n
0 � ��+ �� ≤ m	� (5.5)
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(Reference to ! is omitted from the notation � · �m.) Then, for any � ∈ �, we
have ���X�Dx�X

′�� ≤ C���m0
, provided m0 is large enough, by the Calderón–

Vaillancourt theorem as stated above,
The operators J± may not themselves be bounded. In fact the phase �+

(resp. �−) is not well controlled in the incoming region ��1 � 0 (resp. outgoing
region ��1 � 0) but the operator J+�̃�−D1/�� (resp. J−�̃�D1/��) will be bounded
for any � > 0. (�̃ was defined by (2.1).) To be more precise we consider the operators

J±�̃�∓D1/��
2�J±�∗u�x�− �̃�∓D1/��

2u�x�

=
∫∫

e−i�
±�x���+i�±�x′���a±�x� ��a±�x′� ���̃�∓�1/��2u�x′�dx′ d�

−
∫∫

e−i�x−x
′�·��̃�∓�1/��2u�x′� dx′ d�

=
∫∫

ei�x
′−x�·��±

0 �x� �� x
′�u�x′�dx′ d� (5.6)

where the substitution

�̃�x� �� x′� =
∫ 1

0
�x�

±�y + s�x − y�� �� ds�

has been made and

�±
0 �x� �� x

′� = a±�x� �̃�a±�x′� �̃��̃�∓�̃1/��2��x� x′� ��− �̃�∓�1/��2 (5.7)

where � is the Jacobian corresponding to the substitution. Therefore we have
J±�̃�∓D1/��

2�J±�∗ − �̃�∓D1/��
2 = �±

0 �X�Dx� X
′� is a pseudo-differential operator

with symbol �±
0 ∈ � and with L2��n� operator norm bounded by C���m for some

constant C and integer m, by the Calderón–Vaillancourt theorem (Calderón and
Vaillancourt, 1972). Moreover ��±

0 �m is small because of (2.9) and (3.6). In fact, given
r > 0 we can choose R > 0 in (3.6) and R0 > 0 in (2.9) so that ��±

0 �X�Dx� X
′�� <

r/2. Adding we have

�J+�̃�−D1/��
2�J+�∗ + J−�̃�D1/��

2�J−�∗ − 1� < r (5.8)

because �̃�−�1�2 + �̃��1�
2 ≡ 1. Later we shall see that r > 0 should be small to assure

the convergence of a certain series but for now we just note that, provided r < 1,
J+�̃�−D1/��

2�J+�∗ + J−�̃�D1/��
2�J−�∗ is invertible.

The operators Q± defined by (5.1) can be shown to be bounded by a similar
argument. In fact if the symbol q± is in � and supported on �±��1 < �	 for some
real � then there are constants C = C��� > 0 and m ∈ � which do not depend on q±

so that �Q±� ≤ C�q±�m� See Dereziński and Gérard’s book (1997, Theorem D.13.2)
or White (2001, Equation 5.8).

Introduce a spectral representation for H0. Let

G��� = �1/3��31 + �1��
2
2 + · · · + �2n�

and define the operator U on L2��n� by

Uv�x� = F−n/2�eiG�D�/F v��x/F�� (5.9)
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Then U is a unitary operator on L2��n� and H0 = U ∗x1U� Now suppose v ∈ � ��n�

and define, for each real �, T0���v�x⊥� = Uv��� x⊥�, that is U , followed by restriction
to the plane x1 = � so that T0���v is in � ��n−1�.

The following result is (White, 2001, Lemma 5.1) generalized to the long range
case 
V > 0.

Lemma 1. For any k ∈ � and � > 0 there are constants C > 0 and m ∈ � so that
for any operator Q± as in (5.1) with symbol q±, where q±�x� �� = 0 for ±��1 > � for
some � > 0

���̃�0��� + �x1�−k�̃�−��0��Q
±��x1�k�̃�−��0��� ≤ C�q±�m� (5.10)

Here �̃�0��� and �̃�−��0� are as in (2.1). In addition, for any real �, the operator

��̃�0��� + �x1�−1�̃�−��0��T0���
∗ (5.11)

is bounded as a mapping from L2��n−1� to L2��n� for every � ∈ �. In particular
��̃�−��0� + �x1�−1�̃�−��0��QT0���

∗ is a bounded operator from L2��n−1� to L2��n�

whenever �q�m < �.

Proof. The proof of Lemma 5.1 given in White (2001) is applicable here. There
it was assumed that 
V > 1/2 but that hypothesis, we shall see, was unnecessary.
A notational change is needed: our Q± and q± replace Q and q there; �±�x� �� =
�±�x� ��− x · �. The assumption 
V > 1/2 was used to conclude that that a certain
operator was bounded on L2��n�. It was defined, for any k ∈ � by

u �→ Os-
∫∫

e−ix
′ ·� ±�x� �� x′ + x�u�x′ + x� dx′d�

where “Os-” indicates that the integral is an oscillatory integral (Kumano-go, 1981)
and where �̃ was defined in (2.1) and

 ±�x� �� x′� = �−i�k�̃�x1�
�k

��k1
�ei�

±�x���q±�x� ���
[

x′1
x′1 − x1

]k
�̃�−x′1 − 1�

However this operator can be rewritten in the same form as (5.1) with symbol q̃ ±

q̃ ±�x� �′� = Os-
∫∫

e−ix
′ ·� ±�x� �+ �′� x + x′ + y�x� �� �′�� d1x

′ d1�

where y�x� �� �′� = ∫ 1
0 ���

+�x� �′ + s��− �′�� ds by changing the order of integration
and making a change of variable. Since q̃ ± ∈ C�

b ��
n� the operator is bounded as

noted above or see Dereziński and Gérard (1997, Theorem 13.2). �

Next is the fundamental extension result.
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Proposition 3.

(a) Suppose � > 0 and k ∈ �0. Then there is m = m�k� so that, for any operator Q± as
in (5.1) with symbol q± ∈ �, such that q±�x� �� = 0 for ±��1 > � for some � > 0
and �q±�m < �, the operators

�−��kh�Q±T0���
∗ and Hk

0h�Q
±T0���

∗ (5.12)

extend to entire functions of � taking values in the space of bounded operators from
L2��n−1� to L2��n�. Denote the extensions by the same symbols. For any compact
	 ⊆ �, there is a constant C not depending on q± so that, for all � ∈ 	,

��−��kh�Q±T0���
∗� + �Hk

0h�Q
±T0���

∗� < C�q±�m (5.13)

(b) For any & > 0, e−&�D1�T0���
∗ extends to ����� < F&	 as an analytic operator valued

function bounded from L2��n−1� to L2��n�.

This is (White, 2001, Proposition 5.2) except that that result assumed 
V > 1/2
because it relied on White (2001, Lemma 5.1). However, we have just seen in Lemma
1 above that the assumption 
V > 1/2 in White (2001, Lemma 5.1) was superfluous
and so we can omit it in Proposition 2 as well. Also Part (b) has been restated; it is
an immediate consequence of White (2001, Equation (5.3)).

6. Theorem 2

Our next goal is to establish Theorem 2, assuming Theorem 1. We begin by taking
a closer look at the effective potential V±

J discussed briefly at the beginning of §2.
We consider V+

J to be specific or rather Q+ = V+
J − VeJ

+�̃�−D1/��. Then Q+ is an
operator of the form (5.1) with symbol h��t

+
1 + t+2 �+ t3 where, for �x� �� ∈ �2n,

h�t
+
1 �x� �� = t+�x� ���̃�−��−2���1/� ��̃�−�1/��

+ iF�b�x� ��− 1��̃�x1 + R1���̃�−��−2���1/� ��̃�−�1/���′
+ �̃�x1 + R1�p

+�x� ���1− �̃�−��−2���1/� ���̃�−�1/��
h�t

+
2 �x� �� = iFbe�x� ���1− �̃�x1 + R1����̃�−��−2���1/� ��̃�−�1/���′
t+3 �x� �� = iF�b��x� ��− 1��1− �̃�x1 + R1����̃�−��−2���1/� ��̃�−�1/���′

+ �1− �̃�x1 + R1��p
+�x� ���1− �̃�−��−2���1/� ���̃�− �1/��

− iF

�
�̃′�−�1/��

for any R1 > 0. (R1 will be specified below.) Here t+ is the symbol of Proposition 3.1
and �̃�−��−2� was defined in (3.7) and p+ was defined in (2.4). If � > 0 is suitably
small then t+1 and t+2 are the symbols of bounded operators on L2��n� which we
denote V+

1 and V+
2 ; V

+
3 will be the (bounded) operator with symbol t+3 and so V+

J =
VeJ

+�̃�−D1/��+ h��V
+
1 + V+

2 �+ V3. As for V−
J , similar reasoning applies. We define

V−
k , for k = 1� 2� 3 by complex conjugation V−

k u = V+
k u for any u in � ��n� say.

Then we have

V±
J = VeJ

±�̃�∓D1/��+ h��V
±
1 + V±

2 �+ V±
3 � (6.1)
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The logic for this breakdown of V±
J will become apparent in the next section but

briefly it is this: V±
1 and V±

2 are bounded operators from which we have been able to
extract the exponential decay factor h� and moreover V±

1 is H0-compact and �V±
2 � =

o�1� as R1 → �. As for V±
3 , its symbol t±3 is in �� and it is supported in the strip

����1� < �	 and �V±
3 � is small provided R1 and � are large enough.

Outline of the Proof of Theorem 2. We assume Theorem 1 and derive Theorem 2.
The derivation of (1.6) is well known in the case F = 0 (Isozaki and Kitada, 1985a,
Theorem 3.3) and in the case F �= 0, the proof is similar (White, 2001, Theorem 1.1).
We shall show that each of the terms on the right side of (1.6) has a meromorphic
extension beginning with the term T0���V

∗
J R��+ i0�VJT0���

∗. Since VJ =
∑

± V±
J we

will first show that T0����V
+
J �

∗R��+ i0�V+
J T0���

∗ has such an extension. We do this
in steps by replacing each of the occurrences of V+

J by one of the terms on the right
side of (6.1) and showing that that term can be continued. For instance

T0����V
+
1 �

∗h�R��+ i0�h�V
+
1 T0���

∗

= �T0����V
+
1 �

∗e−�1x
−
1 �f�e−�1x

−
1 R��+ i0�e−�1x

−
1 �f�e−�1x

−
1 V1T0���

∗�

where f is the operator of multiplication by f�x1� = h��x1�e
2�1x

−
1 and 0 < �1 ≤ �/2

so that f is a bounded. Each of the bracketed factors on the right-hand side of
the above equation extend into the lower half of the complex plane as bounded
operators by Theorem 1 and Proposition 5.2. As a further instance, we consider

T0����V
+
3 �

∗R��+ i0�V+
3 T0���

∗

= �T0���e
−&�D1��f̃ �D1���V

+
3 �

∗R��+ i0�V3�f̃ �D1��e
−&�D1�T0���

∗�

where & > 0 is arbitrary and f̃ ��1� = e&��1���−������1� where � > 0 is large enough
that the interval −� ≤ �1 ≤ � contains the support of the symbol t+3 �x� �� of V

+
3 and

��−���� is the characteristic function of that interval. Again each of the bracketed
factors has a meromorphic extension to the lower complex plane. To check this
observe that V ∗

3R��+ i0�V3 has such an extension because �V+
J �

∗R��+ i0�V+
J does,

by Theorem 1 and because V+
J − V+

3 = e−�x−1 A for some bounded operator A by
(6.1). Also e−&�D1�T0���

∗ extends to ����� < F&	 by Proposition 2. It is now a routine
matter to check the remaining cases and show that T0����V

+
J �

∗R��+ i0�V+
J T0���

∗ has
a meromorphic extension from �+ to � as a bounded operator on L2��n−1�. The
argument when either occurrence of V+

J is replaced by V−
J is similar.

It remains to check that T0���J
∗VJT0���

∗ has an analytic extension. Since
VJ =

∑
± V±

J and J = ∑
± J±�̃�∓D1/��, we will actually show that the operator

T0����̃�−D1/���J
+�∗V+

J T0���
∗ has an analytic extension; the other terms, where “−”

replaces “+,” can be treated similarly and so the result will follow. As in the
preceding paragraph we shall replace V+

J by each of the terms on the right side of
(6.1) and show that each term extends. For example, we consider

T0����̃�−D1/���J
+�∗VeJ

+�̃�−D1/��T0���
∗

= �T0����̃�−D1/���J
+�∗e−�1x

−
1 ��f�x1�V0R0�i��

× ��H0 − i�e−�1x
−
1 J+�̃�−D1/��T0���

∗�
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with f as above and 0 < 2�1 ≤ �V (�V as in the Hypotheses.) Each of the bracketed
factors has an analytic extension by Proposition 3. As a further instance we consider

T0����̃�−D1/���J
+�∗V+

3 T0���
∗

= T0����̃�−D1/���J
+�∗V+

3 f̃ �D1��e
−&1�D1�T0���

∗�

with f̃ as above. Certainly e−&1�D1�T0���
∗ extends analytically by Proposition 5.1.

Therefore we wish to show that T0����̃�−D1/���J
+�∗V+

3 also extends analytically.
To do this we recall that J+ has symbol a+ = a+

e + a+
� where a+

� ∈ �� and for some
� > 0, a+

e /h� ∈ �; see the example above. Correspondingly we can write

J+ = h�J
+
1 + J+

� (6.2)

where J+
1 (resp. J+

� ) has symbol a+
e /h� (resp. a+

�). Therefore we must check that
T0����J

+
1 �

∗h�V
+
3 + T0����̃�−D1/���J

+
� �

∗V+
3 extends analytically. The first term does

by Proposition 5.2 Part (a). As for T0����̃�−D1/���J
+
� �

∗V+
3 since the symbol t+3 �x� ��

of V+
3 is compactly supported in the �1 variable (and so decays exponentially fast

in �1) we should be able to apply Proposition 5.2 Part (b) but first a variant of a
commutation argument which shows how the exponential decay “commutes to the
left” is needed and that is given by White (2001, Proposition 5.3). That result uses
the fact that V+

3 and J+
� have symbols in ��. With this observation the reader can

now easily complete the check that T0���J
∗VJJ

+�̃�−D1/��T0���
∗ extends analytically

to all of � and this completes the Proof of Theorem 2. �

7. Theorem 1

In this section we prove Theorem 1. We begin by stating an analogue of
Theorem 1 for the continuation of the free resolvent R0�z� = �H0 − z�−1. It utilizes
the exponential weight function h��X�x1� of (5.4) in and also the operator h��X�−�D1��
which is Fourier equivalent to multiplication by the function h��X�−��1�� which is
e−���1−X� if ��1� > X + 1.

Proposition 4. Suppose that Q±
k , for k = 1� 2 are integral operators as in (5.1) with

symbols q±k in � and for some �0 > 0, q±k �x� �� = 0 if ±��1 > �0. Let �� &� � > 0
and R ≥ 0 be arbitrary. Define P1 to be either P1 = h��RQ

±
1 or P1 = h&���−�D1�� and

similarly define P2 = h��RQ
±
2 or P2 = h&���−�D1�� (a total of nine possibilities for the

pair �P1� P2�). Then, in any case, there exists m ∈ � so that whenever �q±1 �m < � and
�q±2 �m < � then P1R0�z�P

∗
2 has an analytic extension from �+ (resp. �−) to ��z >

−&	 (resp. ��z < &	) as a bounded operator on L2�Rn�. (If Pk �= h&���−�D1�� for k = 1
and 2 both then the extension is to all of �.) Moreover the extensions are bounded in
operator norm uniformly for �q±1 �m ≤ 1, �q±2 �m ≤ 1 and locally uniformly in z, �z > −&
(resp. �z < &). The extension is denoted P1R0�+�z�P∗

2 (resp. P1R0�−�z�P∗
2). Additionally

P1R0�+�z�P
∗
2 = P1R0�z�P

∗
2 + 2�iP1T0�z�

∗T0�z�P
∗
2

�resp. P1R0�−�z�P
∗
2 = P1R0�z�P

∗
2 − 2�iP1T0�z�

∗T0�z�P
∗
2 �

for �z < 0 (resp. �z > 0). If one further supposes that Q±
1 is bounded as a mapping

from the domain D�H0� of H0 (with the graph norm) to itself then, in the cases that
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P1 = h��RQ
±
1 , P1R0�+�z�P∗

2 and P1R0�−�z�P∗
2 are bounded from L2�Rn� to D�H0� and

H0P1R0�+�z�P∗
2 . Also H0P1R0�−�z�P∗

2) is bounded, as an operator on L2�Rn�, uniformly
for �q±1 �m ≤ 1, �q±2 �m ≤ 1 and locally uniformly in z.

This is (White, 2001, Proposition 6.1) except the hypothesis 
V > 1/2 was
needed there because that result relied on White (2001, Proposition 5.2). In view of
Proposition 5.2 above, 
V > 0 suffices.

We shall now express the resolvent R�z� in terms of R0�z� in preparation
for the proof of Theorem 1. We will use a two Hilbert space version of the
resolvent identity. Before stating the identity we recall from (6.2) that J+ = h�J

+
1 +

J+
� . Correspondingly we have J− = h�J

−
1 + J−

� where J−
1 and J−

� are most simply
defined by complex conjugation J−

1 u = J−
1 u and J−

� u = J−
� u for any uin� ��n�. The

decomposition J± = h�J
±
1 + J±

� is not unique and we can further specify that �J±
1 � is

small because, if not then replace the symbol a±
e /h� of J

pm
1 by �1− �̃�x1 + R2��a

±
e /h�

for suitably large R2 and since �̃�x1 + R2�a
+
e belongs to �� it can be incorporated

into the symbols a±
� of J±

� . Here we are using the decay of a±
e /h� as x1 → −� which

may require adjusting � > 0. How small should �J±
1 � be? So small that A and Ã are

invertible where

Ã = ∑
±
J±�̃�∓D1/��

2�J±
� �

∗ and A = ∑
±
J±
� �̃�∓D1/��

2�J±
� �

∗�

Therefore if �J±
1 � is small enough then we can assure that �Ã− 1� < 2r and

�A− 1� < 2r and r > 0 is the constant of (5.8). Recall that r > 0 is a small
parameter, and precisely how small will be specified in the proof of Theorem 1
below. For now we specify r < 1/2 so that Ã and A are invertible on L2��n�.

The resolvent identity convenient here is

R�z�Ã = ∑
±
�J±�̃�∓D1�− R�z�V±

J �R0�z��̃�∓D1/���J
±
� �

∗ (7.1)

We shall want to solve this equation for R�z� and so it would be natural to multiply
by Ã−1 but for technical reasons it will be better to multiply by A−1. We have
ÃA−1 − 1 = ∑

± h�J±
1 �̃�∓D1/���J

±
� �

∗A−1� Define further the operator

B�z� = ÃA−1 +∑
±
�h�V

±
2 + V±

3 �R0�z��̃�∓D1/���J
±
� �

∗A−1

where V±
2 , V

±
3 were introduced in the expansion (6.1) for V±

J . The operator valued
function B�z� is analytic and invertible at least if ��z� is large enough. In equation
(7.1) we collect terms involving R�z� and apply A−1B�z�−1 on the right to get

R�z��1+ K�z�� = ∑
±
J±�̃�∓D1/��R0�z��̃�∓D1/���J

±
� �

∗A−1B�z�−1 (7.2)

where

K�z� = ∑
±
�VeJ

±�̃�∓D1/��+ h�V
±
1 �R0�z��̃�∓D1/���J

±
� �

∗A−1B�z�−1

and this is the starting point of the proof of Theorem 1.
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Proof of Theorem 1. The idea behind the proof of Theorem 1 is quite simple. We
consider e−�x−1 /2R�z�e−�x−1 /2, to be specific and we must show it has a meromorphic
extension across the real axis. Equivalently we shall show h�/2R�z�h�/2 has such
an extension. In equation (7.2) we multiply on the left and right by h�/2 and then
we show that the right hand side the resultant equation extends analytically across
the real axis using Proposition 7.1. The left-hand side becomes h�/2R�z�h�/2�1+
�1/h�/2�K�z�h�/2� and so if we show that �1/h�/2�K�z�h�/2 is an analytic compact
operator valued function then Theorem 1 follows by applying the “analytic
Fredholm” theorem (Kato, 1980, Theorem VII.1.9) or Reed and Simon (1980,
Theorem VI.14) which says that if K̃�z� is an analytic, compact operator valued
function defined on a connected domain and if �1+ K̃�z��−1 exists for some z then
�1+ K̃�z��−1 is meromorphic. The obstacle to completing this proof is that h� does
not commute with the two operators A−1 and B�z�−1 so that Theorem 7.1 is not
immediately applicable. Because of this we shall need an auxiliary result which is
akin to a commutation result for h��R and h&���−�D1�� with, not A−1, but powers of
1− A. Of course A−1 = ∑�

'=0�1− A�' (Neumann series).

Lemma 2. Suppose Q±
1 and Q±

2 are operators (5.1) with symbols q±1 and q±2 in ��

with q±k �x� �� = 0 if ±��1 < �0 for some real constant �0 and for k = 1� 2. Suppose
' ∈ �0 and R� �� �� & > 0 and R� �� 1/� are sufficiently large. Define T± = �Q±

1 �
∗

�1− A�'Q±
2 h&���−�D1�� (resp. T± = �Q±

1 �
∗�1− A�'h��R). Then there exist Q±

k , 3 ≤ k ≤
6'+1 with symbols q±k in �� such that q±k �x� �� = 0 if ±��1 < �0 and operators S±

k ,
k ≥ 2 bounded on L2��n� so that

T± = h&���−�D1��S±
2 +∑

k≥3

�Q±
k �

∗h��RS
±
k

Moreover there is C > 0 (not depending on q±1 , q
±
2 or ') so that �q±k �m < C�q±1 �m for

k ≥ 3 and all m ∈ �0 and there is m0 ∈ � (again not depending on q±1 or q±2 or ') so
that �Sk� < C'+1r'�q±2 �m0

, for all 2 ≤ k ≤ 6k+1 (resp. �Sk� < C'+1r') where r > 0 is
the constant (5.8). Finally, the order of “±” is immaterial: the statement remains true
if T± = �Q∓

1 �
∗�1− A�'Q±

2 h&���−�D1��.

The motivation for this lemma is that it allows “commuting to the left” the
exponential decay represented by the operators h��R and h&���−�D1��. Leaving aside
the proof of the lemma until §8 we shall show how it implies Theorem 1.

The first thing to note is that the lemma implies a certain extension of
Proposition 1 which can be stated as follows. Let Q±

2 , and Q±
3 be two operators as

in (5.1) with symbols q±2 � q
±
3 ∈ �� which are supported in a region ±��1 < �0 for

some �0 > 0. Let P1, q1 �� &� � > 0 and R ≥ 0 be as in Proposition 1. Then, there is
m ∈ �0, so that, if �q±k �m ≤ 1 for k = 1� 2� 3 then

1. P1R0�z��Q
±
2 �

∗A−1h��R
2. P1R0�z��Q

±
2 �

∗A−1Q±
3 h&���−�D1��

3. P1R0�z��Q
∓
2 �

∗A−1Q±
3 h&���−�D1��

extend from �+ (resp. �−) to ��z > −&	 (resp. ��z < &	) as operators bounded
uniformly for �q±k �m ≤ 1, k = 1� 2� 3 and locally uniformly in z. (We can assume
& = � in case 1.) To verify this one expands A−1 = ∑

'≥0�1− A�' and applies
Lemma 2 to every summand. The 'th summand becomes at most 6'+1 terms after
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the application of Lemma 2. To each of these 6'+1 terms, Proposition 4 applies to
show that each term extends in z across the real axis. Moreover, if z is restricted
to a compact subset of ��z > −&	 (resp. ��z > −&	) then the extension is bounded
in operator norm by C'+1r'�q1�m�q2�m�q3�m for some constants C > 0 and m ∈ �
not depending on '. It follows that, if r in (5.8) is chosen so that r < 1/6C then the
extensions form a uniformly convergent series and so the sum is analytic and is the
required extension. (The choice of r will depend on the compact subset of � � z.)

It now follows that �1− B�z��h��R and �1− B�z��Q±
3 h&���−�D1�� have analytic

extensions across the real axis. Indeed each of the operators

1. P1R0�z��Q
±
2 �

∗A−1�1− B�z��'h��R
2. P1R0�z��Q

±
2 �

∗A−1�1− B�z��'Q±
3 h&���−�D1��

3. P1R0�z��Q
∓
2 �

∗A−1�1− B�z��'Q±
3 h&���−�D1��

also has such an extension at least in the case ' = 1, for recall that ÃA−1 − 1 =∑
± h�J±

1 �̃�∓D1/���J
±
� �

∗A−1�. (See the discussion after equation 7.1.) The same is
true for general ' ∈ �0 by analogous reasoning. Next we would like to conclude
that, if one replaces �1− B�z��' by B�z�−1 in the above three expressions then the
new expression also have analytic continuations. This follows by summing over '
because B�z�−1 = ∑

'≥0�1− B�z��'� The series is summable provided that �J1�, �V2�,
and �V3� are chosen small enough (by choosing R1� R2 > 0 and � > 0 large enough
in their definitions) and provided that z is restricted to a compact subset of �.

We are now ready to show that h�/2R�z�h�/2 has a meromorphic extension.
Multiply on the left and right of equation (7.2) by h�/2:

h�/2R�z�h�/2�1+ �1/h�/2�K�z�h�/2�

= ∑
±
h�/2J

±�̃�∓D1/��R0�z��̃�∓D1/���J
±
� �

∗A−1B�z�−1h�/2

We have just seen that the right side of the above equation has an analytic extension
across the real axis and so does �1/h�/2�K�z�h�/2. (We recall �/2 < �V .) Next we
show �1/h�/2�K�z�h�/2 is compact. Certainly V±

1 is compact because its symbol
t±1 �x� �� → 0 along with its derivatives as ��x� ��� → �. Also VeR0�i� is compact by
the Hypotheses so that Ve�H� − i�−1 is compact since the domains of H0 and H� are
the same. Therefore we wish to show that

J±�̃�∓D1/��R0�z��̃�∓D1/���J
±
� �

∗A−1B�z�−1h�/2

is bounded from L2��n� to D�H0� and by Proposition 4 it suffices to check
that J±�̃�∓D1/�� is a bounded operator on D�H0�. That follows because
H�J

±�̃�∓D1/��− J±�̃�∓D1/��H0 is bounded on L2��n� (by Proposition 2). It now
follows that h�/2R�z�h�/2 has a meromorphic extension by the analytic Fredholm
theorem as indicated in the opening paragraph of this proof. Since the extension
exists for some � > 0 it exists far all � > 0.

The second case we consider is that of h�R�z�V
±
3 . In equation (7.2) we multiply

on the left by h� and right by V±
3 :

h�R�z�V
±
3

= −h�R�z�K�z�V±
3 +∑

±
h�J

±�̃�∓D1/��R0�z��̃�∓D1/���J
±
� �

∗A−1B�z�−1V±
3
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The sum on the right-hand side has an analytic extension because V±
3 =

V±
3 h&���−�D1�� for � > 0 large enough and arbitrary & > 0 (because the symbol t3

is supported in the strip −� < �1 < �. The first term on the right-hand side has
an extension by the first case already established. Therefore �V±

3 �
∗R�z�h� has a

meromorphic extension. This, in turn, implies that �V±�∗R�z�h� has a meromorphic
extension because �1/h���V

± − V±
3 � is bounded.

The proof that �V±
3 �

∗R�z�h� has a meromorphic extension is similar but requires
an additional argument: we multiply (7.2) on the left by �V±

3 �
∗ and the right by

h�/2. When checking that the right-hand side of the resultant equation has an
analytic extension we should recall (6.2): J± = h�J

±
1 + J±

� . The expression involving
�V±

3 �
∗J� = h&���−�D1���V±

3 �
∗J� can be seen to extend if we apply White (2001,

Proposition 5.3b) (which requires the analyticity of the symbol of J�).
It can be shown that �V±

3 �
∗R�z�V±

3 and �V∓
3 �

∗R�z�V±
3 have meromorphic

extensions by the same arguments as in the previous two cases. We can interchange
V± and V±

3 in any of the five cases because �1/h���V
± − V±

3 � is bounded. The five
cases together imply Theorem 1 except that Lemma 2 has yet to be verified. �

8. Lemma 7.2

In this section we give a proof of Lemma 7.2 and thereby complete the proof of
Theorem 1. Of interest in the proof is that the analyticity plays a key role allowing
a change of path of integration to obtain the necessary estimates.

Proof of Lemma 7.2. Let us express 1− A = ∑
± �̃�∓D1/��

2 − A± as a pseudo-
differential operator. We recall that A± = J±

� �̃�∓D1/��
2�J±

� �
∗ and repeat the

computation (5.6) in the present setting (replace J± there by J±
� ). We find that A± −

�̃�∓D1/��
2 is a pseudo-differential operator with symbol �±

� say where �±
� is given

by equation (5.7) if one replaces �±
0 there by �±

� and a± by a±
� . Then we have

1−A= −∑
± �±

��X�Dx� X
′� and �±

� ∈ �� and ��±
��X�Dx� X

′�� < 3r where r > 0
was defined in (5.8) by an argument given near (7.1).

The proof of Lemma 7.2 is by induction on '. It may seem that this is
unnecessary since �1− A�' is itself just a pseudo-differential operator. However
the analytic properties of the symbol of 1− A are not clearly reflected in the
symbol of the composite operator �1− A�'. Let us indicate the basic ingredients of
the induction argument. One involves considering �1�X�Dx� X

′�h��R when �1 ∈ ��;
�1 = �±

� is the archetypical example.
We wish to show that �1�X�Dx� X

′�h��R can be written in the form

�1�X�Dx� X
′�h��R = �&���X�Dx� X

′�+ h��RSu �x� (8.1)

where S is a bounded operator and �&���X�Dx� X
′� is the pseudo-differential

operator with symbol �x� �� x′� �→ h&���−��1����x� �� x′� for some � ∈ ��. Moreover,
there are absolute constants C > 0 and m ∈ � so that �S� < C��1�m. This is
analogous to a commutator computation: the exponential decay factor h��R on the
left side of (8.1) gives rise to two terms, one where the h��R multiplies on the left
and the other with exponential decay h&���−��1�� in �1. In both terms the decay
has “moved to the left.” Whatever is to the right of the exponential decay becomes
uninteresting and we need only record that it is a bounded operator, in this case S.

We now prove (8.1). Since �1 = ��1− h��R�+ h��R��1 we see that it suffices to
verify (8.1) with �1 replaced by �1− h��R��1 because �1�X�Dx� X

′� is itself bounded
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by the Calderón–Vaillancourt theorem (Calderón and Vaillancourt, 1972). Therefore
we may as well suppose that �1�x� �� x

′� is supported in the region where 1−
h��R�x1� is, that is where x1 < −R+ 1. Suppose that u ∈ � ��n� and that �, R, and
�1 are positive parameters so that 1/�� R� �1 are large. By a change of the path of
integration

��1�X�Dx� X
′�h��R�u�x�

=
∫∫

ei�x−x
′�·�e(��1��x1−x

′
1��1�x� �− i(��1�� x

′�h��R�x
′
1�u�x

′�d1x
′d1�

where ( is a smooth positive function which is 0 if ��1� < �1 and is � if �1 > �1 + 1.
Provided 1/�� �1 are large enough, the path is indeed in the domain of analyticity
of �1 ∈ ��. Therefore,

��1�X�Dx� X
′�h��R�u�x�

=
∫∫

ei�x−x
′�·�[e(��1��x1−x′1�h&���−��1���1�x� �− i(��1�� x

′�

+ e��x1−x
′
1��1− h&���−��1����1�x� �− i�� x′�

]
h��R�x

′
1�u�x

′�d1x
′d1�

where & > 0 is arbitrary and � > 0 is so large that 1− h&���−��1�� �= 0 implies (��1� =
�: � > �1 + 2 suffices. This verifies (8.1) if we define

��x� �� x′� = e(��1��x1−x
′
1��1�x� �− i(��1�� x

′�h��R�x
′
1��

so that � ∈ ��. To check that S in (8.1) satisfies �S� < C��1�m for absolute
constants C > 0 and m ∈ � we need only apply the Calderón–Vaillancourt theorem
(Calderón and Vaillancourt, 1972). Later in the proof we apply (8.1) when �1 = �±

�

and we will be able to conclude �S� < Cr.
Equation (8.1) is one ingredient of the induction argument; a second ingredient

is as follows. Suppose �1� �2 ∈ ��. Then for any & > 0 and all �, �, and R so that
1/�� �� R > 0 are large enough there exist symbols �k ∈ �� and bounded operators
Sk, 3 ≤ k ≤ 7 so that

�1�X�Dx� X
′��2�&���X

′� Dx′ � X
′′�

= ∑
k=3�4�5

�k�&���X�Dx� X
′�Sk +

∑
k=6�7

�k�X�Dx� X
′�h��RSk (8.2)

Moreover there exist constants Cm�C > 0 and m0 ∈ � not depending on �1� �2

so that ��k�m ≤ Cm��1�m for all m ∈ �0 and �Sk� < C��2�m0
for 3 ≤ k ≤ 7.

Here the notation �k�&���X�Dx� X
′� refers to the pseudo-differential operators

with symbol �x� �� x′� �→ h&���−��1���k�x� �� x
′�, for k = 2� 3� 4� 5. We observe that

h&���−��1���1�x� �� x
′��2�&���X

′� Dx′ � X
′′� is already of the same form as the first term

on the right side of (8.2) (with S3 = �2�&���X
′� Dx′ � X

′′�) and so it suffices to look for
an expansion like (8.2) when �1− h&���−��1����1�x� �� x

′� replaces �1�x� �� x
′� there.

Thus we may assume that �1�x� �� x
′� = 0 if ��1� < � − 1; we shall in fact assume

that �1�x� �� x
′� = 0 if �1 < � − 1 since the other case �1 > −� + 1 is very similar.
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We suppose u ∈ � ��n� and make a change of path of integration

�1�X�Dx� X
′��2�&���X

′� Dx′ � X
′′�u �x�

=
∫∫∫∫

ei�x−x
′�·�ei�x

′−x′′�·�′e−��x
′
1���1−�′1��1�x� �� x

′ − i��x′1�e1�

× �2�x
′ − i��x′1�e1� �

′� x′′�h&���−��′1��u�x′′�d1x
′′d1�

′d1x
′d1�

where � is a smooth nonnegative function which is ��x1� = 0 if x1 > −R′ but is
the constant ��x1� = & if x1 < −R′ − 1. Provided R′ is large enough the path is in
the domain of analyticity of �1� �2 ∈ ��. (Each of the four iterated integrals exists
absolutely provided that the integration is carried out in the prescribed order dx′′ →
d�′ → dx′ → d�.) Introduce into the integrand 1 = h��R�x

′�+ �1− h��R�x
′�� where

R > R′ + 2. The term corresponding to h��R can be expressed as �6�X�Dx� X
′�h��RS6

(as in (8.2)). The other term containing 1− h��R�x
′� is supported where ��x1� =

& by the choice of R and we have e−&��1−�′1�h&���−��′1�� < C&e
−&��1−�� when �1 >

� − 1. Since �1 is supported in the region �1 > � − 1 this other term is of the
form �4�&���X�Dx� X

′ �̃S4 and this establishes (8.2). We observe that in the case that
�1�x� �� x

′� is supported on the region �1 < −� + 1 then the path of integration
should be x′ + ��x′1�i as opposed to x′ − ��x′1�i.

The statement (8.2) remains valid if Q±
2 replaces �2�X

′� Dx′ � X
′′� where Q±

2 is as
in the statement of Lemma 7.2. More precisely, if �1 ∈ �� then for any & > 0 and
all �, �, and R so that 1/�� �� R > 0 are large enough there exist symbols �̃k ∈ ��

and bounded operators S̃k, 3 ≤ k ≤ 7 so that

�1�X�Dx� X
′�Q+

2 h&���−�D1��
= ∑

k=3�4�5

�̃k�&���X�Dx� X
′ �̃Sk +

∑
k=6�7

�̃k�X�Dx� X
′�h��RS̃k (8.3)

Moreover there exist constants Cm�C > 0 and m0 ∈ � not depending on �1� q
+
2 so

that ��̃k�m ≤ Cm��1�m for all m ∈ �0 and �̃Sk� < C�q+2 �m0
for 3 ≤ k ≤ 7. Indeed

the proof of (8.3) is almost identical to (8.2). A similar statement is valid if Q+
2 and

q+2 are replaced by Q−
2 and q−2 respectively.

The final ingredient needed for the induction argument is this: if �2 ∈ �� then
for any & > 0 and all �, �, and R so that 1/�� �� R > 0 are large enough there exist
operators Q±

k (as in (5.1)) with symbols q±k ∈ �� such that q±k �x� �� = 0 if ±��1 < �0

and bounded operators S̃±
k , 8 ≤ k ≤ 10 so that

�Q±
1 �

∗�2�&���X�Dx� X
′� = h&���−�D1��̃S±

8 + ∑
k=9�10

�Q±
k �

∗h��RS̃
±
k (8.4)

Moreover there exist constants Cm�C > 0 and m0 ∈ � not depending on �2� q
±
1 so

that �q±k �m ≤ Cm�q±1 �m for all m ∈ �0 and �̃S±
k � < C��2�m0

for 8 ≤ k ≤ 10. The
proof of this statement is much the same as that of (8.3).

We now indicate how the expansion for T± = �Q±
1 �

∗�1− A�'Q±
2 h&���−�D1�� can

be derived from (8.1)–(8.4). This can be formalized by induction on '. We have
already seen that A− 1 is a pseudo-differential operator with symbol �+

� + �−
� in

��. We apply (8.3) to �1− A�Q±
2 h&���−�D1�� which gives two terms with decay given

by h��R�x1� and three terms with h&���−�D1��. To the former (8.1) applies and to the
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latter (8.2) applies. One continues to apply (8.1) or (8.2), whichever is applicable,
to each of the terms generated. This process moves the exponential decay factors
h��R�x1�, and h&���−�D1�� to the left of �1− A�' and at that stage (8.4) will apply to
about half the terms and the result is the expansion claimed for T±. The number
of terms is at most 6'+1 approximately. (Significantly the number of terms does
not grow faster than Ca' for some absolute constants C > 0 and a > 1). The final
statement of Lemma 7.2 is established similarly. �
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