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Different forms of computational systems, such as binary computers and Turing

Machines, are known to be able to efficiently simulate each other. This is the basis

of the Church-Turing Thesis which stipulates that any sufficiently powerful model of

computing is equivalent to any other - any algorithm in one model can be translated,

in polynomial time, to an equivalent algorithm in another. In 1982 a new form of

computation was introduced which is based on the effects of Quantum Mechanics.

It is currently unknown if Quantum Computing can be efficiently simulated by a

classical computer, and thus might be a more powerful system of computing.

The aim of this dissertation is to study the complexity of quantum computations

from the perspective of groups. Two groups will receive extensive study. Each Toffoli

group is determined and a minimal generating set for each will be constructed, also

the type of simple group created by the direct limit of the Toffoli groups will be

determined. The frames of each Pauli group will be analyzed and lead to a different

realization of the Clifford Group. Let h be the Hadamard Gate, a purely quantum

operator, and let P2n be the collection of permutation matrices of alternating type.
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We will see how SO2n(Z[1/2]).〈H〉 = 〈(h ⊗ I)σ|σ ∈ P2n〉, and that this suggests an

algorithm which decomposes a quantum operator into a sequence of basic operators

which are purely quantum or purely classical. This metric, and another based on

buildings, will be explored.
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Introduction

One yet unanswered question is whether a quantum calculation can be efficiently

simulated on a classical computer. An aim of this paper is to study the complexity of

quantum computations from the perspective of groups. Specifically, an algorithm will

be shown which decomposes a quantum operator into a sequence of basic operators

which are purely quantum or purely classical. Furthermore groundwork will be laid

for placing a metric on calculations by way of a building. A given metric may lead to

a new type of complexity to consider for a quantum algorithm.

This paper also asks new questions of the standard building blocks for both classi-

cal and quantum computing. The new results are: the Main Theorem, analyzing the

Fredkin Group (Theorem 1.1.1), analyzing the Toffoli Group (Theorems 1.1.4, 1.1.7,

and 1.1.9), and Theorems 1.2.3 and 1.2.4 related to frames of the Pauli Groups. Even

when the result is already known, the proofs presented here are original.
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Chapter 1

Computation

Data and information are the building blocks of knowledge. First mathematically

quantified by Claude Shannon in the 1940’s, information is often used to find further

information. Computation is the act of processing information. Algorithms are the

step-by-step procedures which transform given data into new information. They

can be as familiar as the steps for long division, or as abstract as the methods car

navigation systems use to find an optimal route to a destination. Many important

computations are the algorithms used by computers to process data.

Before the advent of computers, researchers noticed that different models of com-

putation were able to simulate all of the others. This idea was dubbed the Church-

Turing Thesis, named after the distinguished researchers Alonzo Church and Alan

Turing. A refined version of this idea is the strong Church-Turing Thesis, which

states that “Any algorithmic process can be simulated efficiently using a Turing ma-

chine.” It was not a mathematical theorem, but a series of observations that any

rich enough system designed to perform computations was no better than any other.
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These systems included such things as Turing machines, lambda calculus, and au-

tomata even including Conway’s Game of Life, and it was seen that they could all

efficiently simulate the others. For instance the class of all algorithms which could

be run in time which is proportional to the size of the input raised to some power

(also known as polynomial time) would stay in that class of algorithms when being

simulated by another machine.

Currently there there is no model of computation which has been proved to be

more powerful than Turing Machines (or its equivalents), but people are still curious

as to whether there might be. Newer computational models being studied include

analog computers, DNA computers, and the focus of this paper, quantum computers.

Although there is no definitive proof, it appears that quantum computers may indeed

be more powerful than the classical variety.

1.1 Classic Computation

One good model of computation is the digital computer. The information being

acted upon is called data and the smallest quantity of information is called a bit,

which is either 0 or 1. These bits are stored electronically. The most basic form of

computation here is an electrical circuit called a gate, which takes as an input one or

more bits and outputs one or more bits. For example, a NOT gate takes a bit and

outputs the opposite value of that bit. Also, an AND gate takes two bits as input

and outputs a single bit which has the value 1 if and only if both inputs had value 1.

Other examples include OR, XOR, NAND, and NOR.
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To visually represent a gate or series of gates acting on a bit, one can draw a wire

diagram. A wire diagram consists of wires and gates. The wires represent physical

wires carrying a bit as an electric signal. Gates are represented in the wire diagram

by various shapes such as squares or triangles, with the appropriate number of wires

entering the gate as inputs and similarly leaving for outputs. A wire diagram is to be

read left-to-right, and one can think of a vertical slice through the diagram as being

a state of the system as time progresses. Thus, the gates on the far left are activated

first, and those on the far right, last.

• �������� •
U�������� �������� •

• • NM


��������
• H NM

 •

The above is an example of a generic wire diagram. Some gates are represented with

boxes, and others are shown with vertical wires joining some of the horizontal wires.

The former will usually be a type of gate which acts on a single wire, and the latter

will represent common gates which act on multiple wires.

There are infinitely many gates that one could construct, but it turns out that a

finite number of them can be combined in various ways to give the same results on

the same input. Any set of gates which do this is called a set of universal gates. For

instance, the NAND and NOR gates (which can be thought of as AND followed by

NOT and OR followed by NOT) turn out to be universal for all gates found on a

computer. As an example, a circuit could be made completely out of these gates to
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compute addition on bounded integers via their binary representation. Having a set

of universal gates allows one to study this particular computing model efficiently.

A gate is said to be reversible if there is another gate (or series of gates) which acts

on the output and returns the original input. Notice that the reverse of a reversible

gate is itself reversible. This requires that the number of outputs of a gate must be the

same as the number of inputs, since otherwise the gate would not be either injective

or onto all possible states. Since a reversible gate has the same number of inputs and

outputs, information is neither created (which requires more electrical energy) nor

destroyed (which generates heat). For this reason, reversible computing is finding its

way into modern computer circuits and CPUs.

Any classical gate can be turned into a reversible gate. If a gate has n inputs and

m outputs, start with an input of length n + m where the original input is on the

first n and 0’s fill the remainder. These are called ancillary bits. The output of the

gate will be the original input, followed by the m output bits for the desired gate.

The gate acting on m + n long inputs with the last m bits not all 0 is undefined, and

so they can be mapped bijectively to the unused n + m bit outcomes. In this way

the new gate is a permutation on all binary strings of length n + m. Notice that a

permutation realizes the reordering of output wires of one gate as the input of another.

The output of the first gate consists of the output, copied over ancillary bits filled

with 0, and junk bits which allowed the computation to be a permutation. Each gate

after the first are constructed in a similar manner in such a way that they respect the

results of valid zero-padded inputs pushed through the previous gates. Thus, if the

number of input plus output bits is bounded, any reversible gate can be represented
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as a permutation on binary strings of bounded length. Composition of gates is thus

the composition of permutation elements. This shows that the full symmetric group

contains these reversible gates, and can be thought of as the universe for gates of this

form. As computing and reversible computing are equivalent in power as models of

computation, we will henceforth take the viewpoint of reversible computation. As

one might expect, reversible universal gates are even more interesting to study, as

collections of gates now generate permutation groups.

In classical computers, one has gates acting on, say n binary inputs. It is instruc-

tive to see how such gates act on the 2n different inputs as permutations on that set.

For convenience, we identify the binary string bn−1 . . . b0 with its base two expansion∑n−1
i=0 2ibi. Then the study of classical computations on n bits is identified with its

permutations on the integers 0, . . . , 2n − 1.

When analyzing the individual bits of a binary string, we often describe a bit

being set or cleared.

Definition 1. The ith bit being set means bi = 1 and being clear means that bi = 0.

Definition 2. The binary string where each bi is clear is denoted 0̄ and the binary

string where each is set is 1̄.

There are three reversible classical gates: the controlled not (CNot), Fredkin, and

Toffoli. We will see that the Toffoli gate is universal and thus can be used to simulate

the other two. Hence any classical computation on a fixed number of bits can be

achieved by applications of the Toffoli gate on all possible wire combinations.

The simplest of the reversible classical gates is the CNot gate, denoted ci
j. It acts
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on two inputs - one of the bits is called the control (bit i) and the other the target

(bit j). The value of the target bit is flipped if and only if the control bit is set. Note

that the CNot gate applied twice is the identity, and thus is an order two operator,

b̃ = ci
j(b), where b̃m =



1 if m = j, bm = 0, and bi = 1,

0 if m = j, bm = 1, and bi = 1,

bm otherwise

As an example suppose that a CNot gate is acting on a system with two bits, then

we can identify every state of the system with the integers 0 through 3. The gate

which uses bit 0 as control (with bit 1 as target) acts as the permutation (1 3), and

the gate which uses bit 1 as control acts as the permutation (2 3).

1.1.1 Fredkin Operators

The Fredkin operators are classical operators which can be viewed as controlled

swaps. The operator f i
j,k swaps the jth and kth bits when the ith bit is set. It is

required that i,j, and k are distinct.

b̃ = f i
j,k(b), where b̃m =



bk if m = j and bi = 1,

bj if m = k and bi = 1,

bm otherwise

The group generated by all Fredkin operators on n bits is denoted Fn, so that

Fn =
〈
f i

j,k|i, j, k distinct and ≤ n
〉
. The distinctness implies that n ≥ 3 to have Fn



7

defined.

Definition 3. The bit weight of a binary string (or number) is the number of 1 bits

it contains.

In this way, all binary inputs of n bits can be partitioned into sets by their weight.

Let wn,k = {bn−1 . . . b0|weight(bn−1 . . . b0) = k}. For example, w2,0 = {00}, w2,1 =

{10, 01}, and w2,2 = {11}. Or, by using the bijection between binary strings of length

n and the integers 0, . . . , 2n − 1, w2,0 = {0}, w2,1 = {1, 2}, and w2,2 = {3}.

Notice that by the definition of the Fredkin operators, swapping bits does not

change the weight, so that weight(f i
j,k(b)) = weight(b). Hence each orbit of Fn is

contained in wn,k for some k.

The orbits of Fn are precisely wn,0, wn,2, . . . , wn,n, and the individual elements in

wn,1 since both wn,0 and wn,n are singleton sets. For a binary string of weight 1, either

bi = 0 or bi = 1 and bj = bk = 0. In either case, f i
j,k acts trivially and thus so does

Fn.

Theorem 1.1.1. Let An = Alt(wn,2) × · · · × Alt(wn,n−1). The derived subgroup of

each Fredkin group, Fn, is An and is of index 2.

Proof. Let Bn =
〈
f i

j,kf
r
s,t|i, j, k are distinct and so are r, s, t

〉
, the subgroup generated

by products of pairs of generators for Fn. The proof will show that Bn = An and then

that F ′
n = An. Pick any generator and call it f0, for example f0 could be f 0

1,2. Now f0

acting on binary strings of weight 2 interchanges precisely two of them. The example

generator is a permutation between 0 · · · 011 and 0 · · · 101. Hence it is a transposition

over wn,2, and so f0 6∈ An since it is odd. The cycle structure over each weight space
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is the same for each f i
j,k. Thus each generator of Bn is an even permutation over each

wn,i and Bn ⊆ An.

If x is any member of Fn, x can be written as a product of k generators. If k is even,

then x ∈ Bn by construction. If k is odd, then x = f1 · · · fk = f0f0f1 · · · fk ∈ f0Bn.

Only two cosets for Bn in Fn gives that the group Fn has a normal subgroup of index

2 contained in An.

For F3 we have f 2
0,1 = (5 6) and f 1

0,2 = (3 6) so that F3 = Sym(w3,2). It is then

apparent that B3 = Alt(w3,2).

For n > 3 we use induction. Suppose Bn−1 = Alt(wn−1,2)× · · ·Alt(wn−1,n−2). Fix

a weight w0. Take any element f of Bn−1 which fixes elements of weight w 6= w0 and

moves elements of weight w0. Then f , as defined by its Fredkin generators, also acts

on binary strings of length n. Here, f moves twice as many binary strings as before -

a copy of two equal cycle structures with one collection adding a 0 bit and the other

a 1 bit. Thus now f as seen as an element of Fn moves elements of weight w0 and

w0 + 1.

We first show that the collection of elements from Alt(wn−1,n−2) in Bn−1, taken

with every permutation of the bits, generate Alt(wn,n−2)×Alt(wn,n−1). Consider the

3-cycles of Alt(wn−1,n−2) as acting on n bits, so each are now pairs of 3-cycles. If σ is

any permutation of the n bits {0, 1, . . . , n− 1}, then defining σ · fk
i,j = f

σ(k)
σ(i),σ(j) shows

σ · f permutes the bits for the 3-cycle pairs. The group generated by such elements

is transitive on wn,n−2 and wn,n−1. This is since the collection of elements of weight

n − 2 (or n − 1) are already known to be in the same orbit, and a 3-cycle pair can

be found to join any same weighted element with the opposite parity for the last bit.
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Just take a bit permutation σ which alters the parity of the last bit, take two elements

of the same weight (and any three of the other weight) for which 0 (resp. 1) would

get moved into the last position by σ and the permuted 3-cycle pair has the desired

effect.

The group which is generated has homomorphisms onto each of the permutation

groups of its orbits. It is well known that 3-cycles which are transitive on a set generate

the alternating group on that set. With two orbits, the kernel is a group which acts

only on the other orbit. The intersection of these subgroups is trivial, so considering

the product of the homomorphisms shows that the group generated by these 3-cycle

pairs is embedded as a subgroup of Alt(wn,n−2)× Alt(wn,n−1). The homomorphisms

show these distinct, simple alternating groups (and Alt(4)) comprise the simple factors

of each group. Hence the group generated is Alt(wn,n−2)×Alt(wn,n−1), as the kernels

must be the full alternating groups.

Finally we use the higher weight alternating subgroups to produce the lower weight

ones. Suppose we have generated Alt(wn,k+1)×· · ·×Alt(wn,n−1). Then consider three

cycles taken from An−1 (and their bit permutations) which operate on elements of

weight k. Then on n bits it is a pair of 3-cycles, one of which operates on elements of

weight k and the other on k + 1. From the already generated alternating product we

have the inverse of the part acting on weight k + 1 elements. Thus we have 3-cycles

only moving elements of weight k and this collection is similarly transitive on wn,k.

Hereby we are able to append Alt(wn,k) to the direct product and eventually generate

An.

For n > 4, the alternating subgroups of An are simple and so the derived group
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of An is An. Considering commutators of such Fn one sees that when a distinguished

element f0 which generates the non-identity coset is needed in a product, it appears

in pairs, giving an even number of Fredkin generators. So F ′
n ⊆ Bn = An, and thus

F ′
n = An. Since F3 is isomorphic to Sym(3), F ′

3 = A3. Finally one can check that

F ′
4 = A4. Therefore the derived group of Fn is An, and it is of index 2 in the full

group, Fn.

Proposition 1.1.2. Fn is generated by the direct product of alternating groups over

the orbits wn,k and a single element t. This element t is a product of transpositions,

with a transposition on those orbits wn,k for which
(

n−3
k−2

)
is odd.

Proof. Let tn,k be the number of transpositions a single generator defines on wn,k. tn,k

will be shown to be
(

n−3
k−2

)
. As each Fredkin generator has the same cycle structure over

the orbits, one only needs to consider one of them. The labeling is inconsequential

as each generator relies on three wires. For the n = 3 case, k must be 2 and each

Fredkin generator is a transposition. So t3,2 = 1, with t3,k = 0 otherwise. When a

lone transposition in Fn is embedded in Fn+1 it becomes a pair of transpositions. One

transposition affects binary strings of the same weight as before, where the added bit is

0, and the other moves binary strings of one weight higher. So transpositions effecting

wn+1,k in Fn+1 came from transpositions effecting wn,k−1 and wn,k in Fn. Hence, when

considering at the transpositions of a single Fredkin generator, tn+1,k = tn,k−1 + tn,k.

This is just the binomial recurrence relation. Shifting this Pascal’s Triangle to be

rooted at n = 3 k = 2 gives the desired result.

Thus, fixing n, any element x in Fn has a standard presentation. The portion of
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the permutation of x over wn,k when
(

n−3
k−2

)
is even for each k is an even permuta-

tion (possibly the identity). However, x has either an even permutation or an odd

permutation simultaneously over each wn,k for all those k for which
(

n−3
k−2

)
is odd.

One can also observe that the Fredkin generators are conjugate in each Fredkin

group. It is true for F3 as it is a symmetric group. Inductively, in Fn+1 Fredkin

generators which ignore the same wire are all conjugate. These collections overlap,

and a chain of conjugation can be made from one generator to any other.

1.1.2 Toffoli Operators

The Toffoli operators are classical operators which can be viewed as controlled-

controlled nots. A controlled not operator is a two bit operator which performs

the NOT operation on the first bit only if the second bit, the control bit, is set.

A controlled-controlled not is a controlled not operator with an additional control

bit, which means that both control bits must be set for the NOT operation to be

performed. The operator ti,jk flips the kth bit if both the ith and jth bits are set. As

with the Fredkin operators, it is required that i,j,and k are distinct.

b̃ = ti,jk (b), where b̃m =



1 if m = k, bm = 0, and bi = bj = 1,

0 if m = k, bm = 1, and bi = bj = 1,

bm otherwise

The group generated by all Toffoli operators on n bits is denoted Tn, so that

Tn =
〈
ti,jk |i, j, k distinct and ≤ n

〉
. The distinctness implies that n ≥ 3 to have Tn
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defined. We have that Fn < Tn as f i
j,k = ti,jk ti,kj ti,jk (note bi must be 1 for any effect,

and then consider the 4 cases for bi, bj).

The orbits of Tn are ∪n
k=2wn,k, wn,0 and the individual elements in wn,1. Notice

that Tn only preserves weights when that weight is 0 or 1. In particular, we see that

wn,0 ∪wn,1 are the only fixed points for Tn. From now on, we only consider Tn acting

on binary strings of weight 2 or higher. Recall that by 1̄, we mean the binary string

of all 1’s.

Lemma 1.1.3. Tn is n-transitive. Furthermore, the n point stabilizer is fixed-point

free on the remaining points for n ≥ 4.

Proof. Let b be a binary string of weight two or higher. It has positions i and j such

that bi = bj = 1. Let {k1, k2, . . . , km} be the (possibly empty) set of positions in the

binary string where bk is 0. Then either b = 1̄ or ti,jk1
ti,jk2
· · · ti,jkm

(b) = 1̄. This shows Tn

is transitive.

Suppose that Tn has been shown to be (p− 1)-transitive, with p ≤ n− 1. Define

p− 1 binary strings b1, b2, . . . , bp−1, where bq
0 = bq

q = 1 and all other bits are 0 for q in

1, 2, . . . , p− 1. Let b be a binary string of weight 2 or more. If it has weight greater

than 2, then it has positions i, j > 1 such that bi = bj = 1. Thus ti,jk (bq) = bq for

each k and q as either the ith or jth position must be zero in bq. Otherwise, b 6= bq for

any q, so it has set positions i and j and similarly ti,jk (bq) = bq for each k and q. Let

{k1, k2, . . . , km} be the (possibly empty) set of positions in the binary string where bk

is 0. Then either b = 1̄ or ti,jk1
ti,jk2
· · · ti,jkm

(b) = 1̄. We also have ti,jk1
ti,jk2
· · · ti,jkm

(bq) = bq for

each q. Hence Tn is p-transitive, and thus 2- through n- transitive.
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Lastly, we fix n binary strings b1, b2, . . . , bn−1, and 1̄. We set aside as special

1̄0 = t1,2
0 (1̄), which has each bit set except the 0th. If b is a binary string of weight 2 or

more such that b is not 1̄0, then b has a zero bit at bk for some k > 0. Also, b has set bits

at i, j > 0. Consider t = tk,j
i ti,jk tk,j

i . We have that t(b)i = 0, t(b)k = 1, and t(1̄) = 1̄.

It is straightforward that t fixes each bq. For the case b = 1̄0, t = t1,2
0

(
t2,3
0 t0,1

3

)2
does

the job - t(b)3 = 0. We have shown that no further points are stabilized within this

stabilizer. The result holds as the group is n-transitive.

Theorem 1.1.4. T4
∼= Sym(4). For n ≥ 4, Tn acts as the full alternating group,

Alt(2n − n− 1), on the 2n − n− 1 non-fixed points.

Proof. It is obvious that T3 = 〈(3 7), (5 7), (6 7)〉 ∼= Sym(4). For the other groups,

our goal is to find a 3-cycle. Once one is obtained, having 3-transitivity gives us

all 3-cycles and that Alt(2n − n − 1) ⊆ Tn. Each ti,jk is a product of 2n−3 disjoint

transpositions - it moves each binary string with positions i and j set with order 2.

The generators all being even permutations for n > 3 gives us the reverse inclusion.

In T4 a generator ti,jk has the cycle structure (a b)(c d). By 4-transitivity, there

is a permutation σ such that [(a b)(c d)]σ = (a b)(c e). Their product is a 3-cycle,

(a b)(c d) [(a b)(c d)]σ = (e d c).

The general case is handled by induction. If Tn−1 has a 3-cycle (a b c), then

(a b c)(a+2n−1 b+2n−1 c+2n−1) is an element of Tn. Let’s call it (a b c)(r s t). If n ≥ 6,

then as Tn is 6-transitive, there is a σ ∈ Tn such that [(a b c)(r s t)]σ = (d b a)(t s r).

Their product is (a d c), as two of the 3-cycles are inverses.

For n = 5 we can only move 5 elements as we like. So, fixing a permutation σ for
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elements except for a, we get [(a b c)(r s t)]σ = (x b a)(t s r), where x is unknown.

If x = c, pick τ in the {a, b, r, s, t} stabilizer which moves c (which exists by Lemma

1.1.3). Replace σ with στ , and the product of the pair of 3-cycles with its permutation

is (a x c), since x 6= c.

1.1.3 Minimal Generators for the Toffoli Group

Our aim in this subsection is to find a subset of the generating set {tki,j} which

minimally generates a Toffoli group. The number of generators tki,j is n(n− 1)(n− 2),

as the indicies must be distinct. One already has that tki,j = tkj,i, which shrinks

the necessary number of required generators by half. Another necessary condition

required by a minimal subset of Toffoli generators is that they must move each element

of weight 2. An element of weight 2 can be represented by 2i + 2j, and the only

generators which move such an element are of the form tki,j, where k is arbitrary.

Note that the resulting binary string now has weight 3. Conversely, every generator

moves only one element of weight 2, the set bits being the same as the control bits

of the generator. Thus, a minimal generating set which satisfies this weak necessary

condition is in 1-1 correspondence with the elements of weight 2. There are n(n−1)
2

such elements, and so this is also a lower bound for the number of minimal generators

of the Toffoli group.

Lemma 1.1.5. A subset of Toffoli generators on n bits is transitive on the set of

elements not of weight 0 or 1 if and only if for every element not of maximal weight

there is a generator which increases the weight of that element by 1.
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Proof. Recall the binary string of weight n, which is composed of all 1’s, is denoted

1̄.

Suppose that for every element other than 1̄, there is a generator which increases

its weight. Then given a binary string x of length n there is a sequence {s1, s2, . . . , sk}

such that {x, s1 · x, s2s1 · x, . . . , gx · x = sk · · · s2s1 · x} are increasing in weight and

gx · x = 1̄. Given two distinct elements x and y, repeat the above if one of them is 1̄.

Otherwise use the construction to obtain gx and gy such that gx · x = 1̄ = gy · y and

then y = g−1
y gx · x and hence the subset forms a transitive group.

Suppose the subset of generators is transitive, and pick a binary string x of weight

between 2 and n−1. Then there is a group element, written as a product of generators,

which moves x to 1̄. In this product of generators, there is a generator t which first

sets a bit outside of the originally set bits. The control bits of t must lie in the

originally set bits of the binary string, as it is the first to set something outside of

that set, and so x · t has a weight 1 higher than x.

Now we construct a generating set of size n(n−1)
2

which will generate a transitive

group. For n bits, where i and j are between 0 and n− 1, define k(i, j) as follows:

k(i, j) =



0 if i 6= 0 and j 6= 0,

j + 1 if i = 0 and j 6= n− 1,

i + 1 if j = 0 and i 6= n− 1,

1 if i = 0 and j = n− 1 or if j = 0 and i = n− 1
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This performs a NOT operation on 0 if i and j are different from 0. If one index is 0,

it performs a NOT operation on a successor of the other index (taken circularly and

ignoring 0). Let our generating set be T ′
n = {tk(i,j)

i,j |i < j < n}. We will show that

T ′
n is a minimal generating set. Given any binary string x which is not 1̄, if bit 0 is

set then there is a bit j which is set but the successor of j is not. As the weight of

the string is at least 2, if 0 is not set then there is a pair i and j which are set. Then

t
k(i,j)
i,j · x has a higher weight than x. As x was arbitrary, and by Lemma 1.1.5, the

group generated by the selected generators is transitive.

Lemma 1.1.6. tki,j = tki,mtmi,jt
k
i,mtmi,j

Proof. Notice that this also says tki,j = (tki,mtmi,j)
2 and tki,j = [tki,m, tmi,j]. If bit i is clear,

both sides affect nothing. Now assume that i is set. If bit j is clear, the left hand

side is the identity, and the right hand side is (tki,m)2 which is also the identity. Now

assume that bit j is also set.

If bit m is clear, then tmi,j sets it. So tki,mtmi,j sets m and performs the NOT operation

on k. Thus tmi,jt
k
i,mtmi,j preserves m and flips bit k. Thus the right hand side can be

seen to preserve m and flip k, and thus is the operation tki,j. A similar argument shows

that when bit m is set that both listed operations have the same exact effect.

Theorem 1.1.7. The group over n > 3 bits generated by T ′
n is the Toffoli group Tn

and T ′
n is a minimal generating set.

Proof. First we note that the generators in the set T ′
n are contained in T ′

n+1 save for

t10,n. However, t10,n = t10,n+1t
n+1
0,n t10,n+1t

n+1
0,n by Lemma 1.1.6. Thus T ′

n is contained in

the generated group < T ′
n+1 >.
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Starting at the base of induction, T ′
3 = {t20,1, t

1
0,2, t

0
1,2}. Knowing that tki,j = tkj,i,

we see that < T ′
3 >= T3, as the Toffoli group is generated by all Toffoli generators

tki,j. Now, assume that < T ′
n >= Tn. We have that Tn =< T ′

n >⊂< T ′
n+1 >, and

so < T ′
n+1 > contains the Toffoli generators of Tn. We wish to show that < T ′

n+1 >

contains the rest of the Toffoli generators - those involving bit n + 1.

For i,j, k,m being distinct and neither 0 nor n + 1, Lemma 1.1.6 gives that (each

line assuming the previously generated):

tk0,n+1 = tk0,mtm0,n+1t
k
0,mtm0,n+1 (1.1)

tn+1
0,j = tn+1

0,n tn0,jt
n+1
0,n tn0,j (1.2)

tn+1
i,j = tn+1

i,0 t0i,jt
n+1
i,0 t0i,j (1.3)

t1n+1,b = t1n+1,0t
0
n+1,bt

1
n+1,0t

0
n+1,b (1.4)

tki,n+1 = tki,1t
1
i,n+1t

k
i,1t

1
i,n+1 (1.5)

This shows that we indeed can generate all Toffoli generators involving the n + 1st

bit. Hence < T ′
n+1 > generates all Toffoli generators tki,j and is thus the Toffoli group

Tn.

1.1.4 Infinite Toffoli group

The natural embedding of the Toffoli groups Tn ↪→ Tn+1 forms a directed system.

Let T∞ be that direct limit; T∞ = lim
−→

Tn. A group is locally finite if every finite

collection of elements generates a finite subgroup. Any group which is the direct
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limit of finite groups is locally finite. Since Tn is simple when n > 3 we conclude that

T∞ is a simple locally finite simple group of alternating type.

Locally finite simple groups have been stratified into 5 distinct families:

• Finite simple groups (Completely classified)

• Finite dimensional linear groups: these have a faithful representation as linear

transformations of a finite dimensional vector space over a commutative field.

(Completely classified)

• Finitary groups: these have a faithful representation as linear transformations

of a vector space over a commutative field, such that every element differs from

the identity by a transformation of finite rank. (Completely classified)

• Groups of p-type (or 1-type): every Kegel cover for the group has a subcover

where each of the simple factors is a Lie type group of characteristic p (respec-

tively an alternating group).

• Groups of ∞-type: For any sequence of finite simple groups such that every

finite group embeds into one of the terms of the sequence, there is a Kegel cover

whose simple factors are among the terms of the sequence.

Here, a Kegel cover is a sequence {(Hn, Mn)} where Hn is finite, Hn/Mn is simple,

and Hn+1 ∩Mn = {1} for every n. The simple factors of a Kegel cover is the set of

factors Hn/Mn. We will make use of this technical concept in a rather simple way,

with Mn = {1} and Hn simple.
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Lemma 1.1.8. If x is an element of order 3 in G = T∞ then |O3(CG(x))| = ∞. If

X is infinite and x is an element of order 3 in G = Alt(X) then |O3(CG(x))| < ∞.

Proof. Here is a common setup to show both statements. For x an element of order 3,

we have that x = x1x2 · · ·xs a product of 3-cycles. Let Y be the set of points it moves.

Let E be the elementary abelian group generated by {x1, x2, . . . , xs}. Centralizers of

elements in the symmetric group over a set X are well known. The centralizer for

x is (E o B) × Sym(X − Y ), where B is the symmetric group of degree s permutes

the s 3-cycles of x. Restricting this centralizer within Alt(X), one gets the index 2

subgroup of alternating elements.

First we consider the case of G = Alt(X). The element x has finite support

and thus E is finite, Y is finite, and X − Y is infinite. We have that CG(x) ⊂

(E o B)× Sym(X −Y ). The 3-core of Sym(X −Y ) is trivial, as an intersection with

Alt(X − Y ) would be a normal subgroup to it. Thus the 3-core of the centralizer is

contained within E o B, which is finite.

Let Ωm be the elements moved by Toffoli group Tm. The element x is in Tm for

some m, composed of s 3-cycles. By the embedding, x is the product of 2s 3-cycles

in Tm+k. In general x is the product of 2ks 3-cycles in Tm+k and moves 2k3s points

Ym+k. O3(CTm(x)) embeds diagonally within O3(CTm+k
(x)), and thus O3(CT∞(x)) =

∪∞k=0O3(CTm+k
(x)). Let Em+k be the elementary abelian group generated by the 3-

cycles of x in its embedding in Tm+k. As Em+k ⊂ O3(CTm+k
(x)) and the size of Em+k

is unbounded as k increases, O3(CT∞(x)) has infinite order.

Finally, we introduce terminology required for the final section of the following
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proof from [4]. Let H be a fixed group acting on a set Ω (|Ω| ≥ 7) as Alt(Ω).

Let Λ be any set on which H acts, and Σ is an orbit of H in Λ. Σ is called Ω-

essential if CH(Σ) ⊆ CH(Ω). Λ is called Ω-block-diagonal if every Σ-essential orbit Σ

is isomorphic to Ω as a set acted upon by H.

Theorem 1.1.9. T∞ is a simple locally finite group of 1-type.

Proof. Any finite group has a linear representation, and any linear group has a finitary

representation. Now assume that T∞ is finitary. By Theorem 5.2 in [6] there would

be an infinite set X such that T∞ = Alt(X). However, by Lemma 1.1.8, one sees that

they are distinctly different groups. Thus T∞ is not finitary, linear, or finite.

For each n let Ωn be the set of 2n−n−1 binary strings of length n upon which Tn

acts. T∞ is of alternating type as every finite subgroup is naturally a subgroup of one

of the finite groups Tn, which acts faithfully on Ωn. Consider H = T5 as a subgroup

for any Tn with n ≥ 6. There are 2n−5 orbits in Ωn by H, each determined by the

content of the upper n − 5 bits which are fixed by H. Ignoring those bits one sees

that each orbit is isomorphic to Ω5 as an H-set. Also CH(Σ) = CH(Ω5) = {1} for

each orbit Σ and thus each Ωn is Ω5-block-diagonal. Using that {(Tn, 1)} is a Kegel

cover for T∞ and Theorems 4.2 and 1.4 from [4], the group T∞ is of 1-type.

1.2 Quantum Computation

Quantum computing originates with Quantum Physics. Physicist Richard Feyn-

man wondered if quantum interactions could be used as a computing device, and

whether it was different than classical Turing machines. Later David Deutsch created
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the first algorithm which specifically made use of quantum effects. Finally, when Peter

Shor found an extremely efficient algorithm to factor integers, many more researchers

became interested and the field became quite popular.

Is there a physical limitation to computation? One of the things proved by Deutsch

was that any computation which can be done by a classical machine could also be

done with quantum computations. It appears that quantum computing is more pow-

erful, and that many classically hard problems are easy in the new framework. For in-

stance, there are more efficient factoring algorithms (Shor’s Algorithm) and searching

algorithms (Grover’s Algorithm). Classical and quantum computing may be equally

powerful, but no one has yet found evidence to support this. There is interest in

seeing how efficiently quantum computing can be modeled in a classical setting.

The perceived additional power from quantum computing comes from acting on

entangled particles in superposition. Upon observation, the quantum waveform col-

lapses and the superposition destroyed so that a unique state is seen in the particles.

The ability to work on more data than seems to be there (until observation) is a

unique property that researchers wished to exploit.

However, in a paper by Albert Einstein, Boris Podolski, and Nathan Rosen (their

initials lead the paper to be called the “EPR paper”) the authors could not imagine

that an unobserved particle did not possess physical properties which existed inde-

pendent of observation. They also presumed that there must be some causality within

the particle interactions which just was not apparent. They claimed that knowing

physical properties existing at this level would allow someone to predict, with cer-

tainty, the outcome a state would have before it was measured. A simple probabilistic
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experiment was later devised where the expected values of basic properties (taking on

values of ±1) would not exceed a certain bound if physical expectations of quantum

mechanics held true. This is known as Bell’s Inequality. This was experimentally

shown to not hold for quantum mechanics.

Quantum interactions are modeled by unitary matrices acting on a complex pro-

jective space. The basic building block analog to the bit in quantum computing is the

q-bit. Each q-bit is modeled in PC2, but realized in C2 by normalizing to length 1.

In Dirac notation, basis vectors for C2 are given as |0〉 and |1〉. The q-bit α |0〉+β |1〉,

with |α|2 + |β|2 = 1 is thought of as |0〉 with probability |α|2 and |1〉 with probability

|β|2. This corresponds to the superposition of a quantum state until it is observed.

A q-bit and its negative are the same projectively, and their probabilistic states are

identical.

Further q-bits are modeled in a tensor product of these complex spaces. A quan-

tum string with 2 q-bits is modeled over C2⊗C2 for instance. For n q-bits, the space

has complex dimension 2n. For example, a string with 3 q-bits has basis vectors

|000〉 , |001〉 , |010〉 , |011〉 , |100〉 , |101〉 , |110〉 , |111〉. It is apparent that unitary matri-

ces preserve the norm 1 condition. Also, this action is meant to represent quantum

entanglement. Under a basis of {ei}, a quantum entanglement of the possible states

is
∑

αiei where
∑
|αi|2 = 1.

The power of quantum computing comes from this entanglement. A quantum

computer can act on all 2n basis vectors simultaneously, while a classical computer

would need to handle each case separately. Entanglement also allows for intermediate

combinations which only increases its usefulness. While there is no known limit to
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how many q-bits natural processes can act on, the most powerful quantum computer

constructed can operate on 7 (with its 128 combinations) [1]. The only issue is that

results are found probabilistically. An algorithm must be run multiple times to ensure

that the result is correct with a high degree of probability.

For instance, one might construct an algorithm which iterated xn+1 = 2 ∗ x2
n for

the integers modulo 4 using two q-bits (with |11〉 = 3, etc.). If the machine was

initialized with all states having equal likelihood, and the computation was halted

and read after one step, then the machine would return |00〉 and |01〉 each with 1/2

likelihood. If read after more than one step, it would always return |00〉. Note that

reading the state of a quantum machine destroys the entanglement and returns a

specific binary string.

Researchers have been able to construct quantum circuits which perform opera-

tions on q-bits. The most basic of these objects are called universal quantum gates, as

all quantum computations can be done by them. One interesting aspect to these gates

is that they are reversible; there exists another gate (or series of gates) which can

take the output back to the original input. Reversibility also exists in the quantum

computing model, as a unitary matrix is invertible, and that inverse is also unitary.

In fact, reversible computing is finding its way into modern computer CPUs, as de-

stroying information takes more energy and causes more heat than propagating an

unused result.
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1.2.1 Classical Gates

Classical computation is handled by the classical gates: CNot (controlled not),

Fredkin (controlled swap), and Toffoli (controlled-controlled not). These have been

constructed for quantum computers, so that all computations which can be done

classically may also be performed quantumly. The purely quantum gates which have

been constructed are the Pauli, Hadamard, and Phase gates. We have seen the Toffoli

groups (which contain all Fredkin and Toffoli gates).

Definition 4. The (complex) Clifford Group is generated by the (complex) Pauli,

Hadamard, Phase, and CNot gates. The real Clifford Group is generated by the real

Pauli, Hadamard, and CNot gates.

These are the complex/real groups which are generated with the discovered quan-

tum gates, and including the CNot gate. Both of these groups are finite, and they

have orders 2n2+2n+3
∏n

j=1 4j−1 and 2n2+n+2(2n − 1)
∏n−1

i=1 (22i − 1) respectively when

acting on n q-bits [3]. Our interest is in the amalgam between the real Clifford group

and the Toffoli group on a fixed number of q-bits.

1.2.2 Quantum Gates

A gate of fundamental importance is the Hadamard gate. It puts a single q-bit

into superposition. If a q-bit has been read, then it has collapsed to either |0〉 or |1〉.

If such a q-bit is passed through a Hadamard gate, then both possibilities become

equally likely if a read is then performed. In unitary matrix form, the non-projective
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Hadamard gate is:

h :=
1√
2

 1 1

1 −1


H

The Phase gate sends |1〉 to i |1〉 and fixes |0〉.

ph :=

 1 0

0 i



S

The Pauli gates are spin operators discovered by Wolfgang Pauli. They can be

represented by the following matrices:

σx :=

 0 1

1 0

 σy :=

 0 −i

i 0

 σz :=

 1 0

0 −1


σx

σy

σz

The Pauli matrices satisfy σ2
x = σ2

y = σ2
z = I2x2, and the determinant of each is

−1 and the trace of each is 0. These can be generated by the previous gates by

σz = ph2, σx = hσzh, and σy = iσxσz. For the last relation, σy acts the same as

σxσz projectively, the imaginary inclusion is there for the non-projective gate to be

an involution. It is interesting to note that the Lie Algebra su(2) is generated by
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iσx, iσy, iσz.

Definition 5. The complex Pauli group is generated by σx, σy and σz while the real

Pauli group is generated only by σx and σz.

Lemma 1.2.1. Projectively the Pauli gates acting on n q-bits is an elementary abelian

2-group of order 4n. The complex Pauli group is a class 2 nilpotent group of order 4n+1

with center {I,−iI,−I,−iI} and derived subgroup {I,−I}. The real Pauli group is

an “+”-type extraspecial group of order 22n+1.

Proof. Consider the generators of the group; 3n gates where for each q-bit one has

{σx, σy, σz}. If one selects generators for different q-bits, then they commute. Thus we

need only focus on each individual q-bit, and here use the 2×2 matrix representation.

One can check that the commutators satisfy [σx, σy] = (σxσy)
2 = −I = [σy, σz] =

[σz, σx]. Projectively, −I = I and thus all of the generators on a single bit commute

in this case and generate a group of order 4. Hence the projective Pauli group on n

q-bits is elementary abelian of order 4n.

One can check that only diagonal matrices commute with σz, and to further

commute with σx restricts attention only to multiples of the identity. Lifting a 2× 2

multiple of the identity on one q-bit to a 2n×2n matrix acting on n q-bits gives us that

same multiple of the respective identity matrix. The center of the non-projective Pauli

group can thus only be multiples of the identity. Since σy = iσxσz, then iI = σxσzσy

is an element of the single q-bit group. Thus the center of the n q-bit Pauli group is

{I, iI,−I,−iI}. The group modulo its center is the projective Pauli group, and thus

the order of the non-projective group is 4n+1. As elements are either purely real or
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purely imaginary, commutators of elements have an even number of purely imaginary

components, which multiply to a real number. Hence the derived subgroup is {I,−I}.

The real Pauli group is generated by σx and σz gates. As before, the projective real

Pauli group on n q-bits is elementary abelian of order 4n. The center, consisting of

multiples of the identity, must is {I,−I}. The commutator subgroup is also {I,−I}.

Thus the real Pauli group is an extraspecial group of order 22n+1. The elementary

abelian subgroup generated by −I and the n σz gates has order 2n+1 and thus the

extraspecial group is of “+”-type.

The classical gates CNot and Toffoli can also be represented in the quantum setting

and each has a related gate for wire diagrams. CNot is a 2 q-bit gate similar to the

3 q-bit gate Toffoli. To perform a not on the second bit if and only if the first is set

reduces to permuting |10〉 and |11〉.

c0
1 :=



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


•
��������

This wire diagram shows that the upper q-bit is the control and the lower bit is the

target. The Toffoli gate is drawn similarly, since it has two control q-bits acting on
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one target q-bit.

•
•
��������

1.2.3 Another Generation of the Clifford Group

The Pauli group is a normal subgroup of the Clifford group (and in fact it is

the 2-core of the Clifford group) [5] but we will attempt the opposite in this section

- show that the normalizer of the real Pauli group in its natural linear group is

the real Clifford group. Henceforth Pauli and Clifford will mean the real version of

those groups. Along the way, the intersection of the Clifford group and all monomial

matrices will be found. This intersection is important for identifying the amalgam

between the Clifford Group and the Toffoli group.

For a given linear group, there is a natural vector space V upon which it acts.

We define a frame for V to be a collection of 1-spaces F = {〈v1〉, 〈v2〉, . . . 〈vn〉} in V

such that {v1, v2, . . . , vn} is a basis for V . G is said to fix the frame F if G permutes

these 1-spaces. It can be the case that for a given linear group there are many frames

which it fixes.

One thing to notice is that if G fixes a frame F and x is in the normalizer of G in

GL(V ), then G fixes x · F . The converse is not true. This is because if Gx · F = F ,

then x−1Gx ·F = F . Thus G · (x ·F ) = x ·F and G fixes this potentially new frame.

We will show that for the Pauli group, the converse is true.

For this section, we let G be the group generated by the Pauli-x and Pauli-z

operators on n q-bits (σx and σz). Recall that G is an extraspecial group of order
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22n+1 and is of “+”-type. The natural vector space acted upon by G is R2n
.

Lemma 1.2.2. An abelian group H acting transitively on a set X is fixed-point free.

Proof. If X contains one or two points, the conclusion is clear. If X contains three

or more points, we argue by contradiction. Suppose that H is not fixed-point free.

Then there are elements x, y, z in X and τ in H such that τ · x = x and τ · y = z. H

transitive implies that there is an element σ in H where σ · x = y. τσ · x = τ · y = z.

στ · x = σ · x = y. H abelian implies that z = y, which is a contradiction.

A generic elementary abelian group of order 2n shall be denoted E2n .

Theorem 1.2.3. Suppose that F is a frame for G in R2n
. Then there is a nor-

mal elementary abelian subgroup of G which is the stabilizer of each 1-space of F .

Furthermore, the frame is the collection of eigenspaces for this subgroup.

Proof. We first invoke character theory to show that G acts irreducibly on C2n
and

thus R2n
. Let χ be the character of G on C2n

. χ(I) = 2n and χ(−I) = −2n. The pure

Pauli-z elements and their negatives are diagonal matrices with an equal number of

1 and −1 entries and thus have trace 0. The rest of the elements are monomial with

diagonal entries all 0. Hence for all g ∈ G which are not ±I, we have χ(g) = 0. The

inner product of χ with itself is [χ, χ] = 2−(2n+1)(22n + 22n) = 1, showing that χ is an

irreducible character and thus R2n
is an irreducible module.

G permutes the 1-spaces of F and its center, {±I}, fixes them. Hence G/Z(G) ∼=

E22n permutes the 1-spaces. This permutation is transitive as G is irreducible on
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R2n
. By Lemma 1.2.2, this transitive abelian action is fixed-point free. Let K be the

kernel of the permutation action. This is also a point stabilizer by the same Lemma,

so |G/K| = |F | = 2n and G/K ∼= E2n .

Now, K has order 2n+1 and fixes the 1-spaces of F . Thus K is abelian since it

acts on R2n
as a direct sum of one dimensional modules. If K were to have an order

4 element k, then for some 〈v〉 ∈ F we would get k · v = iv or −iv which cannot

happen over the reals. Thus K is elementary abelian of order 2n+1.

Theorem 1.2.4. Suppose K is an elementary abelian subgroup of G of order 2n+1

which includes the center of G. Then K has 2n distinct orthogonal eigenspaces in R2n
.

Furthermore, the full group permutes these eigenspaces, so that they are a frame.

Proof. Let K̂ be any subgroup of K missing −I of order 2n. For instance, thinking of

K as a vector space over the field of 2 elements, one can generate such a codimension 2

subspace. Again, the trace of the identity is 2n and all other elements of K̂ have trace

0. Hence R2n
decomposes into the direct sum of 2n distinct 1-dimensional modules

for K̂. These modules are then eigenspaces for K after including −I.

For a given eigenspace 〈v〉, now let K̂ be the kernel in K of the action on {v,−v}.

As −I ∈ K we see that K̂ has index 2 and the preceding module decomposition

holds. Thus, if one picks another eigenspace 〈w〉, then there is a k ∈ K̂ such that

k · w = −w. Now, k is an orthogonal matrix, so its action has no effect on the

standard inner product: 〈v, w〉 = 〈k · v, k ·w〉 = 〈v,−w〉. Adding 〈v, w〉 to both sides

shows that 2〈v, w〉 = 〈2v, 0〉 = 0, giving orthogonality. Since the choice of 〈v〉 and

〈w〉 among eigenspaces was arbitrary, the eigenspaces are orthogonal.



31

Finally we notice that K is normal in G via the correspondence theorem as

K/Z(G) is normal in G/Z(G). So, if x ∈ G and we let F be the set of eigenspaces,

then Kx · F = F . Thus K · (x · F ) = x · F and so x · F is a collection of eigenspaces

fixed by K. Thus F = x · F as there is only one collection of eigenspaces for K, and

F is a frame for G.

Theorem 1.2.5. x ∈ NGL(R2n )(G) if and only if x ∈ O2n(R) permutes the frames of

the Pauli group G.

Proof. Since the frames are all orthogonal, we immediately have that the normalizer

of the Pauli group must be an orthogonal group. When x ∈ N(G), x always permutes

the frames of G. The converse will also be true in this case.

If x permutes the frames of G then Gx has the same frames as G. Let F be a

frame of G. By Theorem 1.2.3, G has an elementary abelian 2-subgroup K of order

2n+1 which acts R2n
as a direct sum of the one dimensional modules forming the

frame. Let K̂ be a subgroup of K of order 2n missing −I. R2n
decomposes into 2n

distinct 1-dimensional modules over K̂. Then each element of K̂ is a diagonal matrix

in a basis extracted from the frame. Since K̂ is abelian it is isomorphic to its linear

characters as a group. Thus the elements of K̂ are determined collectively - their

entries are completely determined via the characters.

Thus a given frame F determines exactly the matrices forming K. The same is

true of Gx, and so K is the subgroup of Gx corresponding to the frame F . Gx must

then contain the elementary abelian 2-subgroups generated by the Pauli-x elements

with −I and the Pauli-z elements with −I. These generate G and thus Gx = G.
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Proposition 1.2.6. The number of maximal elementary abelian subgroups in an

extraspecial 2-group G of “+”-type of order 22n+1 is 2
∏n−1

k=1(2
k + 1).

Proof. There is a well defined symplectic form on the elementary abelian 2-group

E = G/Z(G), of dimension 2n. For x, y ∈ E define (x, y) = [xZ(G), yZ(G)], which

takes values in Z(G). Call these values 0 and 1, for the identity and non-identity

elements respectively. Notice that there is a 1-1 correspondence between the abelian

groups of G of order 2m+1 which contain the identity and totally isotropic subspaces

of E of dimension m, since (x, y) = 0 is equivalent to x and y commuting. The form is

non-degenerate (as the center is order 2) and maximal totally isotropic subspaces are

of dimension n, so that the maximal abelian subgroups have order 2n+1 and include

the center. We count them now.

The symplectic group Sp(E) is transitive on maximal totally isotropic subspaces.

Let E have symplectic basis {e1, e2, . . . en, f1, f2, . . . , fn}, where (ei, fi) = (fi, ei) = 1

(recall this is over the field of two elements) and all others are 0. If {ẽ1, ẽ2, . . . , ẽn}

is a basis for a maximal totally isotropic subspace, expand this to a hyperbolic basis

by selecting an f̃j perpendicular to the subspace and previous f̃i such that {ẽj, f̃j}

is a hyperbolic pair. By definition, Sp(E) has a transformation L with L(ei) = ẽi

and L(fi) = f̃i. The stabilizer of the span of {e1, e2, . . . , en} in Sp(E) is upper block

triangular. Verify that it has the form


 A XA

0 (A−1)T

 ∣∣A ∈ GLn(F2), X + XT = 0
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This has order 2n2 ∏n
k=1(2

k − 1). The order of Sp(E) = Sp2n(F2) is known to

be 2n2 ∏n
k=1(4

n − 1). Thus the number of maximal totally isotropic subspaces is∏n
k=1(2

k + 1).

Since G is of “+”-type, there are two kinds of maximal abelian subgroups. Type

(A) will be the elementary abelian groups of order 2n+1, and type (B) will be the

direct product of a cyclic group of order 4 with an elementary abelian group (not

containing the center) of order 2n−1. We next create a simple geometry by saying

that a type A and type B subgroup are incident if they intersect in an elementary

abelian group of order 2n. Let F be any elementary abelian subgroup of order 2n

and F̃ be a maximal subgroup missing the central element of order two. Let W be

(F/Z(G))⊥ in the symplectic space, so the dimension of W is the codimension of

F/Z(G) which is n + 1. In G, W corresponds to F̃ ×D, where D is a dihedral group

of order 8. Any subgroup of F̃ × D of type A or B is a direct product of F̃ and a

subgroup of order 4 in D. D has one cyclic subgroup of order 4 and two Klein four

groups containing the center. Thus F̃ ×D contains one type B and two type A’s, and

F is only contained in exactly these.

A type B subgroup contains one elementary abelian subgroup of order 2n (its the

subgroup of elements not of order 4), and thus is incident to two type A’s Thinking

of a type A subgroup as a vector space of dimension n + 1 over F2, each has 2n − 1

subspaces of dimension n which include the 1 dimensional subspace Z(G). Thus

each type A subgroup is incident to 2n − 1 type B subgroups. This means that for

every type A, there are 1
2
(2n − 1) type B subgroups. Or, for every type A, there are

1
2
(2n +1) of either type. Dividing this value into the total number of maximal abelian
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subgroups gives the number of which are type A subgroups, and thus the desired

result.

As an immediate corollary, we have that the number of frames for the Pauli group

in dimension 2n is 2
∏n−1

k=1(2
k + 1). If the normalizer were to be transitive on the

frames, we would only need to find the order of a frame stabilizer (say the standard

frame) to find the order of the Clifford Group.

Dimension Frames
21 〈e0〉, 〈e1〉

〈e0 + e1〉, 〈e0 − e1〉
22 〈e00〉, 〈e01〉, 〈e10〉, 〈e11〉

〈e00 + e11〉, 〈e00 − e11〉, 〈e01 + e10〉, 〈e01 − e10〉
〈e00 + e01〉, 〈e00 − e01〉, 〈e11 + e10〉, 〈e11 − e10〉
〈e00 + e10〉, 〈e00 − e10〉, 〈e11 + e01〉, 〈e11 − e01〉
〈e00 + e01 + e10 + e11〉, 〈e00 − e01 + e10 − e11〉,
〈e00 + e01 − e10 − e11〉, 〈e00 − e01 − e10 + e11〉

〈−e00 + e01 + e10 + e11〉, 〈e00 − e01 + e10 + e11〉,
〈e00 + e01 − e10 + e11〉, 〈e00 + e01 + e10 − e11〉

Table 1.1: The Frames for the smallest Pauli Groups

Let us now focus on the stabilizer in N(G) of the standard frame. Any element

which fixes the standard basis is a monomial group. The monomial matrices which

are orthogonal are signed permutation groups. To get an idea of the intersection of

the Toffoli and Clifford groups (which is useful for studying the coset geometry) we

will look at a collection of unsigned permutation matrices which normalize the Pauli

group.

The Pauli-x gates act like NOT gates and Pauli-z gates act as NEG(ation). On the

kth bit these will be denoted Xk and Zk respectively. Recall that the CNot operator

with bit i as control and j as target is ci
j, and that it is its own inverse. Verify that
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conjugation of the basic Pauli gates by CNot gates give the following:

ci
jXkc

i
j =



Xk k 6= i, j

XiXj k = i

Xj k = j

ci
jZkc

i
j =



Zk k 6= i, j

Zi k = i

−ZiZj k = j

This demonstrates that the collection of CNot gates are in the normalizer. Let us

attempt to get a handle on how this part of the normalizer acts on the Pauli group.

The center of the Pauli group is {−I, I}, so the normalizer of the group would

automatically normalize these elements. Thus we will focus on the head of the ex-

traspecial group, which is just an extraspecial 2-group. Let VX and VZ be the vector

spaces over the field of two elements defined by the Pauli-x and Pauli-z gates respec-

tively, quotienting out {−I, I}. Call the quotients by the center X̄k and Z̄k on bit

k. The CNot gates act on these vector spaces, by conjugation on the generators, and

are thus elements of GL(VX) and GL(VZ). Consider the commutator [c, v] = c · v− v

of a CNot operator on each vector space. We have [ci
j, VX ] = spanF2

〈X̄j〉, and

[ci
j, VZ ] = spanF2

〈Z̄i〉.

In both cases these are transvections. Thus the full special linear groups are

achieved on VX and VZ . Hence GL(VX) and GL(VZ) as both vector spaces are over

F2. How does the unsigned permutation group portion of the normalizer act on

VX ⊕ VZ? We’ve seen before in this section that this vector space comes with a

symplectic/orthogonal form (since the characteristic of the field is 2). Future effort

could be in finding Seigel elements here, what portion of the Toffoli group normalizes
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the Pauli group, and the remainder of the normalizer.

Since the Clifford Group normalizes the Pauli group, the Hadamard gates must

also act on the frames. It appears that the Hadamard and CNot gates are transitive

over all frames, but this has not been proven. All frames for each Pauli group can be

determined quickly by starting with the standard frame and applying the Hadamard

and CNot gates to various bits. The interaction of the two groups generated by these

gates also would be interesting to study.



Chapter 2

Geometry

A geometry is a generalization of a graph. A graph has a vertex set V and and an

edge set E ⊆ V × V where (x, y) ∈ E means that the points x and y are connected

by an edge. For a geometry, we introduce a finite set I and a function τ : V → I

which we say colors the vertices and is called the type function. We demand that τ is

onto I, and |I| is called the rank of the geometry. The set (V, E, I, τ) is a geometry

if (V, E) is a graph and whenever (x, y) is an edge then τ(x) 6= τ(y).

A flag in a geometry is a set of vertices T which form a clique (all are incident).

Necessarily the type or color of each vertex must be different. The rank of a flag is

the number of elements in T . A flag is said to be maximal if it achieves the highest

rank attainable in a given geometry. A flag has full rank if τ(T ) = I.

An example of a geometry is a vector space V . Here, the vertices of the graph are

the subspaces and τ maps a subspace to its dimension. So I = {0, 1, . . . , dim(V )}.

Two vertices are incident in the graph if they represent different subspaces and one

is properly contained in the other. A flag in this geometry is a set of subspaces which

37



38

form a chain under proper containment. Full rank flags exist in this geometry; they

have the 0-space contained in a 1-space contained ... contained in the full vector

space.

A category is a collection of objects and maps between them called morphisms

which preserve various properties of the objects through the maps. Morphisms must

satisfy the following: the composition of two morphisms (with the range object of one

being the domain of the other) must be a morphism, and that the identity map on

an object is a morphism. The collection of all morphisms from an object to itself are

the endomorphisms of that object and the endomorphisms which are isomorphisms

are called automorphisms. The collection of all automorphisms of an object forms a

group under composition.

Group actions on sets can be reformulated in this language. The category of sets

consists of objects which are sets and morphisms are functions between sets. The

automorphism group of an object in this category would be the full symmetric group

on that object (set). A group which acts on a set can be mapped homomorphically

into the automorphism group of the set. For a graph, we demand that morphisms

map non-incident vertices to non-incident vertices and that incident vertices will be

mapped to incident vertices or the same vertex. Furthermore, for a geometry, we

want that the color/type of a vertex is preserved under any morphism. Necessarily

for any two geometries to have morphisms between them requires that they have the

same index set I. If a group acts on a geometry, then it has a homomorphic image

into the automorphism group of that object in the category of geometries.

A group which acts on a geometry is flag transitive if for any two flags T and T ′
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with τ(T ) = τ(T ′) there is an element of the group which takes each element of T to

an element of T ′.

In our vector space example, GL(V ) is the automorphism group of the geometry

and it is flag transitive. For a given flag T , find a basis of the smallest subspace

and continue to expand that basis to one for increasingly larger subspaces, and then

expanding it to the full space as necessary. For another flag T ′ with τ(T ) = τ(T ′),

one can construct a basis in the same way. One can see that GL(V ) has an element

which takes one basis to the other, and hence maps one flag to another.

Another important example of a geometry is one associated with groups. For

a fixed group G and a finite number of distinct subgroups H1, H2, . . . , Hn set the

vertices of the graph to be the cosets of these subgroups. The type of the vertex is

the index of the subgroup which it is based on. Two vertices are incident if their

corresponding cosets intersect (but are not equal). Unfortunately in this setting, the

highly desirable property of flag transitivity is only guaranteed for geometries of rank

2. For if gH1 ∩ kH2 6= ∅ then k−1 sends the cosets to k−1gH1 and H2. If h is in their

intersection (which is not empty) then 1 ∈ hk−1gH1 thus we must have the coset of

the identity - the original subgroup. Thus hk−1g takes the original cosets to H1 and

H2 (as H2 is fixed by h).

2.1 Analysis of the Coset Geometry

The group generated by the Clifford Group and the Toffoli Group (on a given

number of inputs) is generated by two of its finite subgroup, and the coset geometry
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has infinite diameter. This means that quantum computations are unbounded - for

any given computation there is another one which takes more steps. This result is

true for any group generated by two finite subgroups, say A and B. There are at most

|A| cosets of B which intersect A non-trivially (and thus have distance 1 from A).

There are at most |A| |B| cosets of A which are distance 2 from A. In general, there

are at most |A|n+1 |B|n cosets of B which are distance 2n + 1 and at most |A|n |B|n

cosets of B which are distance 2n from A. Hence there are only a finite number of

cosets within a fixed distance of one of the subgroups, and thus only a finite number

of elements in their union as the subgroups are finite. Since the group is infinite, no

finite distance in the coset graph will contain all of the groups elements.

The Toffoli group is self normalizing in the amalgam, as is the Clifford group.

This affords us a nice relation between the coset geometry, and another geometry

called the conjugate geometry. Let A be a subgroup of a group G, then {giN(A)}

are distinct cosets for N(A) for some index set I and representatives gi. Then we

have that {Ag|g ∈ G} = {Agi|i ∈ I}. It must be that Agi = Agj if and only if

gi ∈ gjN(A) which occurs if and only if gi = gj as they are coset representatives.

The action on the cosets of the normalizer of a subgroup directly corresponds to

the action (by conjugation) on the conjugates of that subgroup. Now assume that we

have two subgroups A and B, which are both self-normalizing. In coset geometry, two

cosets are incident when they have non-trivial intersection. In conjugate geometry,

Ah being incident to Bk corresponds to the existing an element g such that Ag = Ah

and Bg = Bk.
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2.2 Tensor Products

Let V and W be vector spaces over a field k, with basis {vi} and {wj} respectively.

Let U be the subgroup of the free abelian group V×W with U = {(vα, w)−(v, αw)|v ∈

V, w ∈ W, α ∈ k}. The tensor product of these spaces V and W is a vector space

V ⊗ W defined as the homomorphic image of V × W under U . It has as its basis

{vi ⊗ wj}. The tensor product of two linear maps f and g is the bilinear map f ⊗ g

where, on the basis, f ⊗ g(vi ⊗ wj) = f(vi)⊗ g(wj).

If one were to apply a gate which works on n q-bits on that many of an m > n

q-binary string, then the 2m by 2m matrix representing this gate on a larger system

is found by the Kronecker product of a permutation matrix with the matrix for the

gate over the n q-bit system. The Kronecker Product of two matrices is a matrix

over the tensor product of the original bases. It is the matrix of the tensor product

of the two linear transformations represented by the original matrices. The values

are computed as A⊗ B(e⊗ f) = A(e)⊗ B(f). For example, the Kronecker product

between the 2x2 identity and 2x2 Hadamard is:

I2x2 ⊗ h = 1/
√

2



1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1


One focus of ours will be in Kronecker products of permutation matrices and Hadamard

gates.



Chapter 3

Main Theorem

The group of real quantum operators is known to be an orthogonal group (and

unitary in the complex case). Here, a larger orthogonal group will be found containing

it. The Clifford Group and Toffoli groups generate the group of quantum operators,

where the Toffoli group is alternating on all length n binary strings of bit weight at

least 2. Now consider the group which is generated by the Clifford Group and the

full signed alternating group on all binary strings of length n. We will show that this

group is SO2N(Z[1/2]).〈H〉 and will consider ways to make use of this information

in later chapters. Here the “.” means that the first group is a subgroup of the full

group and the full group is generated by the subgroup and a lone Hadamard gate

H = h⊗ I ⊗ I ⊗ · · · ⊗ I.

Definition 6. Let R be a ring, define R{α} = ∪∞n=0Rαn, the multiplicative monoid

generated by R and α. Note: if α ∈ R then R{1/α} = R[1/α] is a ring.

Definition 7. P2N is the set of signed 2N × 2N permutation matrices.

42



43

Main Theorem. SO2N(Z[1/2]).〈H〉 = 〈Hσ|σ ∈ P2N〉

3.1 Proof of the Main Theorem

We will need the following definitions. For z ∈ Z{1/
√

2}, we have that z = y/2w/2,

with y ∈ Z. Define the weight of such an element to be w which is the minimal power

of 21/2 whose product with z is an integer. Call ā the integer part of a with respect to

w when ā = 2w/2a is an integer. Define the weight of a matrix in GL2N(Z{1/
√

2}) to

be the maximum weight of its entries. This weight is also the minimal power of 21/2

whose product with that matrix is an integer matrix. The weight of a row or column

of this type of matrix is defined similarly.

The following, while trivial, is used a number of times and thus is presented here.

Lemma 3.1.1. Let A, B be matrices in M2N×2N(Z){1/
√

2} ∩ O2N(R) with weights

wA, wB respectively. Let wAB be the weight of AB. Then wAB ≤ wA +wB. Moreover,

wAB = wA + wB (mod 2).

Proof. AB = 2(wA+wB)/2X where X is an integer matrix.

Consider a vector space of dimension 2N over Z{1/
√

2}, with ordered the basis

(e1, f1, e2, f2, . . . , eN , fN). Set h to be the negative of the standard 2 × 2 Hadamard

matrix, h = − 1√
2

 1 1

1 −1

. Define H on (Z{1/
√

2})2N by the left action of h on

the pair (ei, fi). Equivalently, H is the Kronecker product h⊗ IN , with IN being the

N ×N identity matrix.
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Let S2N = {2−w/2X|X ∈ M2N×2N(Z), XTX = 2wI2N}. Notice that for X ∈ S2N ,

the weights of each element of X have the same parity. In particular, the weight of

each column has the same parity.

Lemma 3.1.2. P2N ⊂ 〈Hσ|σ ∈ P2N〉 for 2N ≥ 4.

Proof. Begin with the basis {e1, e2, . . . , e2N} and let A be a matrix in P2N . We will

select permutations {σ1, . . . , σk} such that Hσk · · ·Hσ1A is the identity, and for j < k

Hσj · · ·Hσ1A will have a block which is the identity. In this way, A = Hσ1 · · ·Hσk ,

which demonstrates the desired result.

For 2N > 4, there are four possibilities for the location and sign of the non-

zero entry of the first column. If A1,1 = 1 (case 1), continue by induction on the

2N − 1× 2N − 1 sub-block on indicies 2 through 2N . For the remaining three cases,

let σi(j) = σi+1(j) for i > 2. Suppose As,1 = −1, with s 6= 1 (case 2). Let σ1 and σ2

be permutations with σ1(1) = σ2(2) = 1 and σ1(2) = σ2(1) = s. Then A′ = Hσ2Hσ1A

is a matrix in P2N and A′
1,1 = 1, bringing us to the previous case.

If As,1 = 1, with s 6= 1 (case 3), then there is a t with At,1 = 0 since 2N > 4.

Let σ3 and σ4 be permutations with σ3(1) = σ4(t) = s and σ4(2) = σ3(1) = t. Then

A′ = Hσ4Hσ3A is a matrix in P2N and A′
t,1 = −1 and t 6= 1, which is case 2. Finally,

suppose A1,1 = 1 (case 4). Let σ5 and σ6 be permutations with σ5(1) = σ6(2) = 1

and σ6(2) = σ5(1) = s, for some s > 1. Then A′ = Hσ6Hσ5A is a matrix in P2N and

A′
s,1 = −1, bringing us to the previous case. Thus in all cases, we can find a series

of permutations such that their conjugations with H leave a 1 in the (1, 1) position,

and continue inductively.
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For 2N = 4 we may assume that A1,1 = 1 by the methods above. Let σ = (3 4)

and note that projectively HHσ acts as the permutation (e3 e4). For σ1 = (2 3) and

σ2 = (2 3 4) note that Hσ1 and Hσ2 both pair row 1 with 3 and 2 with 4. Projectively

Hσ2Hσ1 acts as the permutation (e2 e4). Thus the group generated by HHσ and

Hσ2Hσ1 acts projectively as the symmetric group on {e2, e3, e4}. Hence there is an

element H ′ in that group such that A′ = H ′A is a diagonal matrix with A′
1,1 = 1.

If A is a 4 × 4 diagonal matrix with A1,1 = 1, then either two or zero diagonal

elements are −1 as the determinant is 1. The squares of the previous Hadamard

products are diagonal: (HHσ)2 and (Hσ2Hσ1)2 have two 1 and two −1 entries. Either

A is the identity, one of the two squares of Hadamard products, or their product.

The following theorem shows that the group of quantum operators, seen as an

amalgam of the Clifford and Toffoli groups, is a subgroup of SO2N(Z[1/2]).〈H〉. Note

that signed permutations are not required in the following proof until the last step. If

the above Lemma 3.1.2 could be shown to be true for defining P2N to instead be only

non-signed permutation matrices, then the result would be strengthened. Further

note that the permutations used can be restricted to those which are even. The

Toffoli Group is isomorphic to Alt(22N − 2N − 1), which is nearly the full alternating

group. This gives a feeling about how closely the group of quantum operators fits

into its overgroup.
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Main Theorem.

〈Hσ|σ ∈ P2N〉 = SO2N(Z[1/2]).〈H〉 = M2N×2N(Z){1/
√

2} ∩ SO2N(R)

Proof. The containments from left-to-right are obvious, as det(H) = 1 and H along

with every permutation matrix is orthogonal. Given X ∈ S2N , a (left) inverse shall

be constructed from elements of the form Hσ where σ ∈ P2N . We will induct on the

dimension, 2N .

Consider the first column of X as a vector, with entries a1, a2, . . . , a2N . As X is

orthogonal,
∑2N

i=1 a2
i = 1. If w is the weight of the column, we can consider the integer

part of these entries with respect to w, and notice that
∑2N

i=1 ā2
i = 2w. If the weight is

0, then it is necessarily the case that for a single j we have aj = āj = 1 and all other

ai’s are 0.

Otherwise, when the column weight is positive, we have 0 =
∑2N

i=1 ā2
i =

∑2N
i=1 āi

(mod 2). Hence we have an even number of odd āi’s and similarly an even number of

even elements. Choose any permutation σ ∈ P2N of the elements such that under the

new ordering, when considered in our ordered basis {ei, fi}, each ei and fi have the

same parity for all i. Now, ei±fi is even, so h(ei, fi) = (−(ei +fi)/
√

2,−(ei−fi)/
√

2)

has weight at most the weight of {ei, fi} minus 1. Hence HσX is an element of S2N

and it has a weight strictly less than w for its first column. This argument may be

continued until the weight of the first column is 0.

With the first column having weight 0, we can focus our attention on the second

column (in fact, one could consider the first two columns simultaneously). We wish
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to pair these in such a way to get a 2× 2 identity matrix. The entries of this column

are b1, b2, . . . , b2N . Suppose that aj = 1, and the rest are 0. Note, by orthogonality,

that 0 =
∑2N

i=1 aibi = bj. Let w be the weight of the second column. For w = 0, then

bk = 1 for some k 6= j with all others 0. If w > 0, then w is even as all columns

have the same parity. Pick a permutation σ1 that pairs the bi in all even and all

odd groups, just like above. Without loss, σ1(1) = j and let k = σ1(2). The second

column of Hσ1X has entries c1, c2, . . . , c2N . Now, pick a new permutation σ2, so that

σ2(1) = σ1(1) and σ2(2) = σ1(2) and the remaining ci are paired as above (cj = ck

(mod 2) by orthogonality). Hσ2Hσ1X preserves the first column of X, and decreases

the weight of the second column. This occurs since Hσ1 and Hσ2 must both, in turn,

reduce the weight, and the weight is odd (and thus positive) when Hσ2 is applied.

This argument may be continued until the weight of the first two columns is 0.

Now, by considering the inner product of a row with itself, the jth and kth rows

have one non-zero entry. Hence, under a permutation, we have a 2× 2 identity block

and a block of size 2(N − 1) × 2(N − 1) in S2(N−1). The above argument can be

repeated, using permutations which fix the already finished rows.

Now we are left with a signed permutation matrix. By the previous Lemma 3.1.2,

this is in the group.

Note that replacing the full alternating set of matrix permutations with the actual

Toffoli Group does not give the same result. However it should be the case that, if care

is taken at each stage to select a permutation which is Toffoli, then the algorithm
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should decompose quantum operators into a product of Clifford and Toffoli gates.

Also note that each Pauli gate is contained in SO2N(Z[1/2]).〈H〉, and thus Hadamards

will be the only non-classical gate which will be represented in a decomposition.

Finally, define the decomposition length of a matrix to be the minimal length it can

be decomposed in products of the form Hσ.

Theorem 3.1.3. Let A, B be elements of SO2N(Z[1/2]).〈H〉. Define d(A, B) to be

either the weight or decomposition length of A−1B. Then d(·, ·) is a metric on the

coset space SO2N(Z[1/2]).〈H〉/P2N .

Proof. We have that d(A, B) ≥ 0 and if d(A, B) = 0 then A−1B ∈ P2N so AP2N =

BP2N . Note that A−1 = AT, so A and A−1 have the same weight and decomposition

length. This provides symmetry: d(A, B) = d(B, A). The triangle inequality is more

involved to check.

We have that A−1C = A−1BB−1C, and the weight of A−1C is seen to be bounded

above by the sum of the weights of A−1B and B−1C. Whence d(A, C) ≤ d(A, B) +

d(B, C) for distance based on weight. Considering the distance based on decompo-

sition length, A−1B =
∏

hσiσA and B−1C =
∏

hσjσB. Thus we find that A−1C =∏
hσi

∏
hσAσjσA

−1
(σAσB) and this provides an upper bound to the decomposition

length. Again the triangle inequality is obtained. In either case we have a metric.

3.2 The Main Theorem as an Algorithm

We can analyze the method of the proof to come up with an upper bound for

a running time of an algorithm which implements the result. This is the same as
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finding an upper bound for the distance in the coset graph (for the Clifford Group

and P2N) to the identity if we only happen to know the weight associated with the

matrix. Each iteration in the proof acts on the given matrix with a Clifford operator

(specifically a Hadamard operator) conjugated by a permutation matrix (representing

a Toffoli operator), with the resulting matrix being a signed permutation matrix.

Experimentation shows this to be an extremely crude upper bound. Also, empirical

speed tests on large dimensional examples shows this algorithm to be quite fast. It

also gives an idea of the distance in the Clifford-Toffoli coset graph an actual quantum

operator is from the identity.

Proposition 3.2.1. For an n× n matrix with weight w (and n even), an algorithm

implementing the method in the proof has running time O(2nw).

Proof. For a matrix with weight w, we have that each column has at most weight w.

It will take at most w steps to reduce the weight of a selected column to 0. The weight

of every other column at worst increases by 1 as the selected column is reduced, thus

they each have weight at most w + w = 2w after the selected column is reduced.

By induction we show that after k columns are reduced, the weight of the remain-

ing is at most 2k+1w. When working on the kth column, k − 1 have been reduced to

0 and so we assume to have at most 2kw for the weight of the remaining columns.

It takes at most 2kw steps to reduce the newly selected column (respecting the al-

ready reduced ones) and the others at worst increase in weight by 1 at each step.

Thus, after reducing the kth column, the remaining columns have at most weight

2kw + 2kw = 2k+1w.
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The number of steps to reduce the n columns is w + 2w + · · · + 2nw = (2n+1 −

1)w.

Proposition 3.2.2. Two non-reduced columns in a matrix within SO2N(Z{1/
√

2})

can be simultaneously reduced by an element Hσ.

Proof. Suppose the two given columns have column weights wa and wb with values

a1, a2, . . . , a2N and b1, b2, . . . , b2N respectively. So wa, wb > 0. For p and q in {0, 1},

let Yp,q = {i|āi = p (mod 2) and b̄i = q (mod 2)}. As the first column is not reduced∑2N
i=1 āi = 2wa and so

∑2n
i=1 āi = 0 (mod 2). This gives that the number of āi =

0 (or 1) (mod 2) is even and thus the sizes of Y0,0 ∪ Y0,1 and Y1,0 ∪ Y1,1 are even.

Similarly the number of elements in Y0,0 ∪ Y0,1 and Y1,0 ∪ Y1,1 are even.

By orthogonality,
∑2N

i=1 aibi = 0 and so
∑2N

i=1 āib̄i = 0. Taken modulo two, one sees

that Y1,1 has an even number of elements. Immediately one gets that Y0,0, Y0,1, Y1,0, Y1,1

all have an even number of elements. A permutation σ may be chosen which creates

a pairings contained within each Yp,q.

This improvement shows that an algorithm can be constructed with a running time

of O(2n/2w) on n×n matrices , following a similar argument. Another observation is

that when only 4 or fewer columns remain to be reduced, these columns have column

weight at most 2. Consider 4 integers modulo 8, the sum of squares of which are 0.

Then they must all be 0 modulo 8, and thus multiples of 4. Such numbers cannot

represent a reduced column.

Note that this analysis has nothing to do with the Church-Turing Thesis - it is

a self-contained measure of complexity. Decomposing a quantum operator or even
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using the decomposition to act on a vector will always involve a column with 22N

numbers. To have a relation to the Church-Turing Thesis, these operations would

have to be polynomial in N .

Here is some data obtained by decomposing 10,000 randomly created matrices

in SO2N(Z[1/2]).〈H〉. Under random permutations σ, products of Hσ were obtained

having a specified weight. Then the algorithm described above is utilized. At the time

of choosing a column to reduce, one of minimum weight is selected. This column is

then paired with another and both are reduced simultaneously, switching the second

column if necessary. The results give how many times a decomposition length was

obtained for a random matrix of a specific weight.

Figure 3-1: Decomposition Length of 10,000 random 8× 8 matrices of weight 10
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Figure 3-2: Decomposition Length of 10,000 random 8× 8 matrices of weight 20

Figure 3-3: Decomposition Length of 10,000 random 16× 16 matrices of weight 10
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3.3 Normalizers

Fix a positive integer N. Let P (earlier called P2N) be the elements of weight 0 in

SO2N(Z{1/
√

2}). This is the subgroup of signed permutations of determinant 1. Let

P̂ be the intersection of P and all unsigned permutations. Thus P̂ is the permutation

representation of the alternating group on 2N elements. Note that one of the results

is proved in two dramatically different ways.

Proposition 3.3.1. For 2N ≥ 8, P̂ and P are self-normalizing in SO2N(Z{1/
√

2}).

Proof. The standard frame, F = {〈e1〉, 〈e2〉, . . . , 〈e2N〉}, is stabilized by the monomial

matrices (which are the diagonal matrices times permutation matrices) in GL2N(R).

Restricting this stabilizer to SO2N(Z{1/
√

2}) gives P .

If x ∈ N(P ), where N(P ) is the normalizer of P , then P stabilizes the frame x ·F .

This is because PxF = xPx−1xF = xF . The aim is to show that P only stabilizes

F , so that P is self-normalizing.

First we find which one dimensional subspaces are preserved by P̂ , and use n =

2N . Let v = a1e1 +a2e2 + · · ·+anen be an element in such a space. As P̂ is transitive

on the standard basis, we see that a1 = a2 = · · · = an. Hence there is but one fixed

one dimensional subspace which is preserved by P̂ , namely 〈e1 + e2 + · · · en〉. Pick a

non-zero vector in this space and call it ṽ.

Let F ′ be the frame {〈w1〉, 〈w2〉, . . . , 〈wn〉}, which is stabilized by P̂ . On this

frame, P̂ has orbits O1, O2, . . . , Ok. As n ≥ 8, P̂ ∼= Alt(n) is simple. The kernel of

P̂ acting on O1 is either trivial or the full group. If the kernel is trivial, then O1 is

the full frame. This is since if O1 contains j subspaces, then |P̂ | ≤ j!, so j must be
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n. If the kernel is the full group, then O1 has but one subspace. Thus all orbits are

trivial, as the other Ok cannot have n elements. This contradicts the space having

only a single one dimensional subspace fixed by P̂ . Therefore P̂ acts faithfully on F ′.

The automorphism group for Alt(n) is Sym(n) for n ≥ 8, so we can reorder F ′ so

that the action on the indices coincides with that on the indices of {e1, e2, . . . , en}.

Let wi = a
(i)
1 e1 + a

(i)
2 e2 + · · ·+ a

(i)
n en. The subgroup stabilizing index 1 will fix e1 and

w1. As it is transitive on the rest of the indices, we see that a
(i)
2 = · · · a(i)

n . By scaling,

we have that w1 = ae1 + bṽ. In general wi = ei + bṽ, after scaling (as the coefficient

of ei being 0 does not give a basis of the space).

Consider a linear transformation x ∈ SO2N(Z{1/
√

2}) for which F ′ = xF . Up to a

coset of P̂ , x has one of two forms. The first maps ei to αiwi, the second does the same

but switches the first and second index. In either case, we have row orthogonality

in the matrix x. So, for each i, j, we have that 0 = αiαj(2b(1 + b) + (n − 2)b) =

αiαjb(2b + n). Each αi cannot be 0, and if b = 0 then the frame F ′ is the standard

frame. We must show that b = −n/2 cannot occur. Again, using row orthogonality,

we see that 1 = α2
i ((1 + b)2 + (n − 1)b) = α2

i (1 + 2b + nb2) = α2
i (1 − n + n3/4). We

must have αib and αi(1 + b) as elements of Z{1/
√

2}, so each αi is also. For n even,

1− n + n3/4 is an integer which is relatively prime to 2, and so its reciprocal is not

an element of Z[1/2].

Now we consider the signed matrix p in P such that p(e1) = −e2 and p(e2) =

e1, where all other standard basis vectors are fixed. So, p(w1) = p(e1 + b(̃v)) =

p((1 + b)e1 + be2 + be3 · · · ben) = −e2 − 2be2 + b(̃v). This can only be in some 〈wi〉

if b = 0. This leads to a = 0 (for distinctness) and thus F ′ is the standard frame,
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F .

Fix a positive integer N. Let P ∗ be the elements of weight 0 in O2N(Z{1/
√

2}).

This is the signed permutation group. Similarly, let P continue to be the elements

of weight 0 in SO2N(Z{1/
√

2}). This is the subgroup of signed permutations of

determinant 1, also called P2N .

Proposition 3.3.2. P ∗ is self-normalizing in O2N(Z{1/
√

2}). P is self-normalizing

in O2N(Z{1/
√

2}). P is self-normalizing in SO2N(Z{1/
√

2}).

Proof. We only prove the third claim, all others are similar. Here, for brevity, we set

the normalizer of P as N(P ) = NSO2N (Z{1/
√

2})(P ).

Let p(a,b) be the matrix permutation which switches rows (or columns) a and b.

Let p−a be the diagonal matrix with entries “1” except for the a, a-th entry which is

“-1”.

Pick m ∈ O2N(Z{1/
√

2}). We wish to show that m has weight 0. m = 2−w/2X

where w is the weight of m and X is a (necessarily reduced) integer matrix.

Consider (p−ap(a,b))
m = m−1p−ap(a,b)m = mtrp−ap(a,b)m in the case where the

weight of m is positive. The weight of this matrix is at most 2w. Now let Y =

Xtrp−ap(a,b)X − XtrX. Then Yi,j = −(Xa,i − Xb,i)(Xa,j − Xb,j) + 2Xa,iXb,j. So

(p−ap(a,b))
m has weight exactly 2w > 0 iff Y has an odd entry (as (p−ap(a,b))

X =

2wI + Y and we are taking w > 0). This occurs iff Xa,i −Xb,i is odd for some a, b, i

(as the integer matrix will have an odd entry at the i, i-th position).

So, if m ∈ N(P ), then m has weight 0 or Xa,i − Xb,i is always even for every

0 ≤ a, b, i ≤ 2N . In the latter case, it must happen that X is a matrix of all odd
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entries, and thus the weight must be at least 4N . This is because the weight can be

found by the inner product of a row with itself and no row has a zero entry in this

case.

Now consider (p−ap−b)
m, with a 6= b and m ∈ N(P ). Let Z = X trp−ap−bX−X trX.

Then Zi,j = −2Xa,jXb,j and (p−ap−b)
X = 2wI + Z. If the weight of m is positive,

then for (p−ap−b)
m to have weight 0 it must be the case that 2w divides Z. But 21

exactly divides Z as X has all odd entries. Hence if the weight of m is positive, it

must be both 1 and also larger than 2N , a contradiction.

Hence, if m ∈ N(P ) then m has weight 0. If m has weight 0, then m ∈ P ⊂ N(P ).

Therefore P is self-normalizing in SO2N(Z{1/
√

2}).

As a corollary to both of these propositions, the same self-normalizing results for

(possibly signed) elements of weight 0 are also true of the groups SO2N(Z[1/2]).〈H〉,

SO2N(Z[1/2]), and the group of quantum operators.



Chapter 4

Quadratic Forms over Q2

With the knowledge from the Main Theorem that the group of quantum operators

is embedded in SO2N(Z[1/2]).〈H〉 ⊂ SO2N(Z{1/
√

2}), we might attempt to under-

stand it better by considering properties of an overgroup. Motivated by a paper of

Kantor[8] which studies some orthogonal groups over Z[1/2], we too shall investigate

vector spaces over the 2-adic field Q2. The goal here is to find a change of basis in

such a vector space from the standard sum-of-squares, which the groups respect, to

a skew form which is easier to work with.

4.1 P-adics

Along with the reals, which are the completion of the rationals under the standard

norm, another type of completion gives a collection of values which are useful in many

number theoretic applications. As well as the standard norm, the rationals have a

family of norms each based on a fixed prime p. For an integer m, let op(m) be the

57
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largest integer k such that pk divides m. For a reduced fraction of integers m
n
, we

define the p-adic norm |·|p to be
∣∣m

n

∣∣
p

= op(n)−op(m). Not only is the p-adic norm an

actual norm, it satisfies a stricter condition which makes it a non-Archimedean norm:

for each pair of rationals x and y, |x + y|p ≤ max(|x|p , |y|p). The p-adic numbers are

the completion of the rationals under this norm (for a fixed p), and are denoted Qp.

We would next like to see that p-adics can be expressed in a nice form. For any

x ∈ Qp, let m = |x|p, then x can be represented by b0p
−m + b1p

−m+1 + · · ·+ bm−1p
−1 +

bm + bm+1p + · · · , where each bi is an integer in {0, 1, 2, . . . , p− 1}. See [9] for details.

The p-adic integers Zp are the p-adic numbers with no fractional part, and are equal

to {x ∈ Qp| |x|p ≤ 1}. We can recognize addition, subtraction and multiplication on

the p-adic integers, and extend them to all p-adic numbers if we first factor out from

those numbers an appropriate power of p. The values of x + y, x− y, and xy can be

determined by doing the standard algorithms base p, but on values of possibly infinite

length. Indeed, restricting Zp mod pm for a positive m is a ring homomorphism.

4.2 Quadratic Forms

Fix a field k, and a vector space V over k. A map f : V × V → k is bilinear

if for each x, y, z ∈ V , and α ∈ k f(αx + z, y) = αf(x, y) + f(z, y) and f(x, αy +

z) = αf(x, y) + f(x, z). The map is said to be symmetric if ∀x, y ∈ V we have

f(x, y) = f(y, x). The map is said to be skew symmetric if f(x, y) = −f(y, x) under

the same conditions. The space V is said to be orthogonal with respect to f if f is

symmetric, and symplectic if f is skew symmetric. We will be interested in a certain



59

symmetric map.

Two vectors x and y are said to be orthogonal when f(x, y) = 0. For a subspace

W of V , we define its orthogonal complement W⊥ as the collection of all vectors

orthogonal to every vector of W , W⊥ = {x ∈ V |f(x, y) = 0,∀y ∈ W}. Observe

that W⊥ is itself a subspace of V . We call V ⊥ the radical of V . It is the collection

of vectors which are orthogonal to every vector in V . We are most interested when

V ⊥ = 0, and when this occurs we say that f is non-degenerate.

A vector x is said to be isotropic if f(x, x) = 0. A subspace W is said to be totally

isotropic if f(x, y) = 0 for each x and y in W . In other words, W is a totally isotropic

subspace if W ⊆ W⊥. A subspace W is nondegenerate if its radical is 0, in other

words W ∩W⊥ = 0 in V .

A quadratic form on V is a map Q : V → k such that for each x ∈ V and

α ∈ k, Q(ax) = a2Q(x) and Q(x + y) − Q(x) − Q(y) is a symmetric bilinear form.

Conversely, if f is a symmetric bilinear form, then f(x, x) is a quadratic form. If

we set f(x, y) = Q(x + y) − Q(x) − Q(y), then Q(x) = f(x, x)/2. Hence we have a

bijection between symmetric and bilinear forms when the characteristic of the field

is not 2. When the characteristic of the field is 2, then there are distinct quadratic

forms which have an equivalent symmetric bilinear form. In this case it is better to

consider a space V as an orthogonal space with respect to the quadratic form Q.

A vector x ∈ V is said to be singular if Q(x) = 0. The subspace W of V is said to

be totally singular if W is totally isotropic and each vector in W is singular. If Q has

an associated symmetric form, then being singular is equivalent to being isotropic,

and being totally singular is equivalent to being totally isotropic. The Witt index of
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V with respect to Q is the maximum dimension among all totally singular subspaces

of V .

Pick a basis for the space over which the bilinear form f acts {v1, v2, . . . , vn}.

Let Q̂ be the matrix with entry f(vi, vj) in the (i, j)th position. Then, with vectors

represented in this basis as n×1 column matrices, one can check that f(x, y) = xTQ̂y.

Note that if f is a symmetric form then the matrix Q̂ is a symmetric matrix, and if f

is a skew form then Q̂ is a skew symmetric matrix. Thus the related quadratic form

Q has the form Q(x) = f(x, x) = xTQ̂x.

The discriminant d(Q) of a quadratic form Q is the determinant of the associated

matrix. If P is an invertible matrix which is being used to change the basis for the

form then the associated matrix changes with respect to P . If y = Px then we

have that xTQ̂x = yTP -TQ̂P−1y and so the new matrix under the change of basis

is (P−1)
T
Q̂P−1. So the discriminant under the new basis is det((P−1)

T
Q̂P−1) =

det(Q̂) det(P−1)2. This tells us that the discriminant is unique in k/k2, that is,

unique up to a square. If the discriminant is 0, then the row rank is strictly smaller

than the dim(V ). Hence one can find a vector y which is orthogonal to the row space,

in other words Q̂y = 0. Thus f(x, y) = 0 for every x and rad(V ) = V ⊥ is non-trivial

and the form is degenerate. It can be checked that the discriminant being non-zero is

equivalent to the form being non-degenerate. We are interested in the non-degenerate

case and thus consider discriminants within k∗/(k∗)2.

Matrices A for which Q(x, y) = Q(Ax, Ay)∀x, y ∈ V are matrices which preserve

the quadratic form. Under the matrix form, it is necessary and sufficient that Q̂ =

ATQ̂A. If the form is non-degenerate, then the discriminant of Q is not 0 so 1 =
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det(A)2. So in particular A is invertible. It is straightforward to check that, in this

case, the set of matrices which preserve the form is a group. For familiar forms, these

lead to familiar groups such as the orthogonal groups, unitary groups, and symplectic

groups.

One interest we have is when two quadratic (or symmetric bilinear) forms are the

same form up to a change of basis. Surely then, they must have the same invariants

(such as the discriminant) if they are the same. Over Q2, it happens that it is

necessary and sufficient for two forms to be equivalent that only a few invariants are

identical ([10] page 39). These other invariants involve the Hilbert symbol.

The Hilbert symbol (a, b), much like the well known Legendre symbol, tells us when

a certain quadratic equation has a solution. When z2 = ax2 + by2 has a solution in

k3 − (0, 0, 0), then (a, b) = 1. It has the value −1 otherwise. Over the 2-adics, there

is an equation for computing the Hilbert symbol. To compute it, we need to define

two further functions on odd integers:

ε(n) =
n− 1

2
(mod 2) =


0 n ≡ 1 (mod 4)

1 n ≡ 1 (mod 4)

ω(n) =
n2 − 1

8
(mod 2) =


0 n ≡ ±1 (mod 8)

1 n ≡ ±3 (mod 8)

These arise in the Legendre symbol for determining whether −1 and 2 are quadratic

residues. For a, b ∈ Q2, a = 2αu and b = 2βv where u and v are 2-adic units. If

u = 1 + q12
1 + q22

2 + · · · is a 2-adic unit then ε and ω are computed using the same
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formulas. Explicitly, ε(u) = q1 (mod 2) and ω(u) = q1 + q2 (mod 2). The formula

for the Hilbert symbol on a, b ∈ Q2 is ([10] page 20):

(a, b) = (−1)ε(u)ε(v)+αω(v)+βω(u)

4.3 Moving Between Forms

There are two symmetric forms which we are interested in. Both are known as

orthogonal forms. In an n dimensional space, the form f(x, y) =
∑n

i=1 xiyi is the

standard sum-of-squares form which is familiar. The associated matrix Q̂ is the

identity matrix in this case. The associated matrix group is the standard orthogonal

group, for which I = ATA which is derived from the earlier discussion. Notice

that the group of quantum operators generated by Clifford and Toffoli groups is the

collection of matrices with entries in Z[1/2] which preserve this form (by the Main

Theorem). The other orthogonal form of interest in n dimensional space is similar to

the symplectic form on the surface. The dimension of the space must be even, and

one selects a basis {e1, e2, . . . , em, f1, f2, . . . , fm} where f(ei, ej) = f(fi, fj) = 0 and

f(ei, fj) = δi,j. The associated 2m× 2m matrix with this form is:

Q̂ =

 0 I

I 0



Under the change of basis vi = 1
2
(ei + fi), vm+i = 1

2
(ei − fi) one can check that

f(vi, vj) = 0 if i 6= j (hence the familiar orthogonality is present) and that f(vi, vi)
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is 1 for i ≤ m and is −1 otherwise. This is only possible if the field is not charac-

teristic two, so the previous definition is more general. Under the more general form,

geometries are easier to study.

We would like to know when these two forms are equivalent over Q2. One imme-

diate restriction is that we must use an even dimensional vector space. As 1
2

is an

element of Q2, we can assume the second form for the later symmetric bilinear form.

The associated matrix in the sum-of-squares form (call it Q1) is the identity matrix,

and is a diagonal matrix with an equal number of 1’s and −1’s in the case of the

other form (henceforth Q2).

Lemma 4.3.1. The two forms, Q1 and Q2 are equivalent forms on a vector space of

dimension n over Q2 if and only if 8 divides n.

Proof. Let n = 2m. If v̄ = {v1, v2, . . . , vn} is an orthogonal basis for V = Qn
2 ,

ε̂(v̄) =
∏

i<j(Qi,i, Qj,j), where the latter is using the Hilbert symbol.

Theorem 7 in Serre for forms over Qp ([10] page 39):

Two quadratic forms over k are equivalent if and only if they have the

same rank, same discriminant, and same invariant ε.

Under both forms, the rank is n. In either case, any vector orthogonal to a

basis element vi is a linear combination of the other basis vectors. Thus any vector

orthogonal to all of them must be the zero vector and hence V ⊥ = {0}. The rank is

equal to the codimension of the radical, and so must be n.

The discriminant for Q1 is just det(I) = 1. As half of the diagonal elements in

the associated matrix form for Q2 have −1 entries, its discriminant is det(Q̂2) =
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(−1)n/2 = (−1)m. This invariant is equal for the two forms when 2 divides m.

To compute the ε̂ invariant we need to compute the Hilbert symbols in a few cases.

We have that 1 = 201 and −1 = 20(−1) (or 20(1 · 20 + 1 · 21 + 1 · 22 + 1 · 23 + · · · )).

Furthermore, ε(1) = 0, ε(−1) = 1, ω(1) = 0, ω(−1) = 0. So, using the definition of

the Hilbert symbol, we see that: (1, 1) = (1,−1) = (−1, 1) = 1 and (−1,−1) = −1.

On the first form, ε̂ has the value 1. On the second form, ε̂(v̄) =
∏

i<j(Qi,i, Qj,j) =∏
m<i<j(−1) = (−1)

m(m−1)
2 . This value is 1 when 4 divides m or 4 divides m− 1.

The rank is always equal and all invariants match only when 4 divides m. Thus

the forms are equivalent precisely when 8 divides n.

Working one subspace at a time, we will be able to find a change of basis between

the forms Q1 and Q2. We’ve already seen a change of basis which takes the symplectic-

like form to its orthogonal version. The above Lemma 4.3.1 shows that we need

only worry about dimensions which are a multiple of 8, and so if we can find a

change of basis in 8 dimensions then we can do it for all cases. Converting it to

the sum-of-squares form is done by recursively dividing the space into orthogonal 1

and n − 1 dimensional spaces, with the form restricted to each. Finding the one

dimensional subspace amounts to finding a vector x such that Q(x) = f(x, x) = 1

(in our case). We can reduce ourselves to looking for vectors which represent 1

as the sum-of-squares form has n orthogonal vectors which do so. We have that

f(v1, v1) = f(v2, v2) = f(v3, v3) = f(v4, v4) = 1, so 4 of the 8 dimensions are already

taken care of.

Lemma 4.3.2. If a ≡ 1 mod 8, then a has a square root in the 2-adics.
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Proof. If it has a square root in the integers, we are done. Let a = 1 + 8b. Since

a is odd modulo 2n with n ≥ 1, any prospective square root should be of the form

2k + 1. Attempting to solve (2k + 1)2 = 1 + 8b modulo a large power of 2 leads to

the equation 4(k2 + k − 2b) = 0.

We now make use of this equation to find a sequence convergent in the 2-adics

which satisfies the equation for ever-increasing powers of 2. Let k0 = 0. Given ki, set

2nisi = k2
i + ki − 2b where si is odd and let ki+1 = ki + 2ni . Then k2

i+1 + ki+1 − 2b =

2nisi + 2ni+1ki + 22ni + 2ni = 2ni(si + 2ki + 2ni + 1). Now, as si is odd, si + 1 is even.

Also 2ni is even, even when ki = 0 as we assume k2 + k − 2b = 0 has no solution k

in the integers. Hence the equation is congruent to 0 for a larger power of 2 for ki+1

than for ki. If xi = 2ki + 1, then |x2
i − a|2 = 2−2−ni and {xi} is a Cauchy sequence

(as we are only adding powers of 2). Hence the sequence converges to a square root

of a.

A specific solution to −x2
5 − x2

6 − x2
7 − x2

8 = 1 is Z1 = (1, 1, 2,
√
−7). Here we

used that −7 has a square root in the 2-adics (and is equal to 20 + 22 + 24 + 25 +

27 + 214 + O(215)). We further set the following mutually orthogonal vectors Z2 =

(1,−1,
√
−7,−2), Z3 = (−

√
−7,−2, 1, 1), and Z4 = (−2,

√
−7, 1,−1). Extending

these vectors by 4 leading dimensions (and with zero coefficients), we obtain the

desired relation that f(Zi, Zj) = δi,j. Alternatively, setting a 4 by 4 matrix B with

the values of the Zi’s gives B2 = −I, or B−1 = −BT.

A change of basis matrix for converting the sum-of-squares norm to the skew form
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is: 

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 −
√
−7 −2

0 0 0 0 1 −1 −2
√
−7

0 0 0 0 2
√
−7 1 1

0 0 0 0
√
−7 −2 1 −1


This change of basis can also be used in the p-adics for p 6= 2 when −7 is a residue

mod p. This follows directly from Hensel’s Lemma. The times for which −7 is a

residue is given by the Legendre symbol (−7
p

) = (p
7
) since 7 = 3 mod 4 and so when

p = 1, 2, 4 mod 7.

For the general case of p 6= 2, the forms are equivalent in all dimensions divisible

by 4. While the above change of basis works for some primes, the restriction to

dimensions a multiple of 8 may be inconvenient. The following two change of basis

matrices work with the cases in which −1 is a residue (when p = 1 mod 4) and

respectively when −2 is a residue (p = 1, 3 mod 8).



1 0 0 0

0 1 0 0

0 0
√
−1 0

0 0 0
√
−1





1 0 0 0

0 1 0 0

0 0
√
−2 −1

0 0 1
√
−2





Appendix A

Appendix

A.1 Buildings

The goal of this section is to find a structure known as a building associated

with the group SO2N(Z[1/2]). Then, with the thought that the group of quantum

operators is near its overgroup SO2N(Z{1/
√

2}).〈H〉 we would analyze how these

operators acted on the discovered building. The affine D̃n building is desired as

acting on the associated tree structure would provide an interesting metric on the

group of quantum operators.

Sadly, this was not to be. What appears here is the background for the subject

and framing for the presumed building structure. In the following section the less

interesting spherical Dn building is obtained.

67
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A.1.1 Coxeter Groups

Historically, the first studied Coxeter groups were reflection groups, finite groups

which are an isometry group for some Euclidean space. These reflection groups con-

sider all systems of n mirrors in n dimensions. In two dimensions, these are kalei-

doscopes, and in higher dimensions they are the symmetry groups for regular solids.

Coxeter groups are the family of groups which extend reflection groups, without an

underlying Euclidean space. Also, Weyl groups of semi-simple Lie algebras are Cox-

eter groups, which were first studied at about the same time.

Formally, a Coxeter group is a group generated by involutions with certain simple

relations. If this set of order two elements is S = {s1, s2, . . . , sn}, then the group

can be written W = {S|(sisj)
mi,j = 1}, where mi,j is a positive integer (or infinity).

There are no further relations than the collection (sisj)
mi,j = 1, and any set of

relations which lead to a group where the order of sisj is smaller than mi,j is not a

Coxeter group.

Focusing on the exponents mi,j, we derive the following. First we must have

that mi,i = 1∀i as s2
i = 1. Secondly the exponents are symmetric in the indices:

mi,j = mj,i. To see this, first expand the product, (sisj)
m = sisj · · · sisj = 1 ,

and consider the inverse of the word of elements, 1 = s−1
j s−1

i · · · s−1
j s−1

i . As the

generating elements each have order 2, the inverse of the element is itself and so

1 = sjsi · · · sjsi = (sjsi)
m. Finally, we notice that if mi,j = 2, then si and sj

commute. This is because (sisj)
2 = sisjsisj = 1 implies that sisj = s−1

j s−1
i = sjsi.

Examples:
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• The dihedral groups Dn = {s, t|s2 = t2 = (st)n = 1}.

• The free product C2 ∗ C2 = D∞ = {s, t|s2 = t2 = 1}.

• The symmetric groups Sn = {s1, s2, . . . , sn−1}, with si = (i, i + 1) and n ≥ 2.

(Here mi,j = 3 if |i− j| = 1 and is 0 otherwise.)

• The groups of reflections and rotations of regular solids in any dimension are

generated by the reflections.

A Coxeter matrix is a matrix M such that Mi,j = mi,j. Note, that by the above,

it is a symmetric n by n matrix with integer (or infinite) entries, where n = |S|.

Examples

M(Dn) =

 1 n

n 1



M(S5) =



1 3 2 2

3 1 3 2

2 3 1 3

2 2 3 1


A Coxeter diagram is a graph with n = |S| nodes which encodes the same informa-

tion as the Coxeter matrix. In more generality these are known as Dynkin diagrams.

Two nodes i and j are connected exactly when mi,j ≥ 3. If i and j are connected, then

the value of mi,j appears above the edge between them when mi,j ≥ 4. Hence there

are no self edges in such a diagram, unjoined generators means that they commute,

and unlabeled but joined nodes have a product of order 3.
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An s s s s s
Bn,Cn s s s s s4

Dn s s s s����

HHHH

s
s

E6 s s s
s

s s

E7 s s s
s

s s s

E8 s s s
s

s s s s
F4 s s 4 s s
H3 s s 5 s
H4 s s 5 s s
I2(n) s n s

Figure A-1: The list of Coxeter graphs for the finite Coxeter groups
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There are other equivalent formulations for Coxeter groups. They focus on the

representations of elements in the group by generators. By a word in the generating

set S, we mean an ordered sequence (si1 , si2 , . . . , sim) of elements in S. We let w be

such a word and write w = s1s2 · · · sm, where sj in a word is a shortcut for sij as it

appears in S. By a reduced decomposition of a word w, we mean an equivalent word

representing the same element of the group which is of minimal length. Define `(w)

to be the length of w represented by any reduced decomposition.

One equivalence of a Coxeter group is a group with the Exchange Condition: given

a reduced word w = s1s2 · · · sm and s ∈ S, then either `(sw) = `(w) + 1 or there is a

deletable index i so that w = ss1s2 · · · ŝi · · · sm as an element in the group. Another

is the deletion condition: given w = s1s2 · · · sm, if m > `(w) then there exists indices

i and j such that w = s1 · · · ŝi · · · ŝj · · · sm. Plainly, the deletion condition states that

if a word is not reduced then there is a pair of generators which can be removed from

a word and the result still represents the same element. The determination of which

index/indices can be removed for these conditions is answered by various algorithms.

Because of these properties, Coxeter groups are an example of a group which has

a solvable word problem. The word problem in a group is the question of deciding

whether a word in terms of the generators of a group is the identity. This can

equivalently be stated regarding if two words represent the same element. One must

simply apply the deletion algorithm to a word - if it does represent the identity, then

all elements will eventually be deleted.
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A.1.2 Coxeter Complexes

An idea permeating group actions is that external objects upon which a group

acts can be internalized. We will be able to then turn this around and have a generic

external object, called a Coxeter complex, which is closely associated to a Coxeter

group. Pushing the idea of a Coxeter complex will lead to the notion of a building.

Buildings, which require a pairing of a group which acts upon them, provide a wealth

of information about the associated group.

For the Coxeter groups which are reflection groups, we begin by considering the

natural (or minimal) real vector space on which it acts. Each generator represents

the reflection across a hyperplane. Each reflection moves a hyperplane to another

hyperplane. Let the orbit of hyperplanes by the Coxeter group (each element thought

of as a product of reflections) be H, which will be finite as the group is finite. Each

hyperplane in H divides the space into two regions. Consider these two regions as

containing the hyperplane, so that the half-spaces are closed.

Define a cell to be any intersection of half-spaces or hyperplanes, one for each

hyperplane in H. If the hyperplane itself is chosen each time, then the cell will be

a single point (the origin). As otherwise if it were a subspace then the vector space

being acted upon is not minimal as this subspace can be quotiented out. On the other

extreme, a maximal cell is known as a chamber. Such things are always intersections

of half-spaces for each hyperplane in H, although the converse is not true.

Ordered by inclusion, this collection of cells form a simplicial complex. Every

cell is a simplex - positive linear sums of vectors within the cell are also contained
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in the cell. This property is inherited from the half-spaces and hyperplanes whose

intersection is the cell. The number of linearly independent vectors in a cell determine

its dimension. The full collection of cells, ordered by inclusion, form a partially

ordered set (commonly called poset) where the origin is the smallest of all elements

and chambers are the maximal elements. Furthermore, given any two comparable

cells, there is a cell between them for every dimension between those of the given

cells. This can be accomplished by replacing appropriate half-spaces used in the larger

cell’s creation with hyperplanes (appropriate meaning that the hyperplane contains

the smaller cell).

Now internalize the simplicial complex for reflection groups by looking at the cell

stabilizers. All of these stabilizers are conjugate to a group generated by a subgroup

of S, the set of involutions which generates the Coxeter group. This is since all

hyperplanes can be generated by reflections through the initial hyperplanes. Let a

special subgroup of the Coxeter group be any group generated by a subset of S. Every

stabilizer of a cell is conjugate to some special subgroup. From the point of view of

the special subgroups, each is the stabilizer of some cell. Thus any given cell will

include a unique special cell in its orbit. Or, the orbits of the special cells uniquely

cover all cells. Internally, the action of the group on an orbit of cells is equivalent to

the action on cosets of a cell stabilizer.

For these Coxeter groups which are reflection groups, the simplicial complex is a

realization of the Coxeter complex. However, we now have a different set of objects

upon which the group acts the same: all cosets of all special subgroups. The origin

corresponds to the full group, and chambers all correspond to cosets of the identity



74

(thus there are as many chambers as there are elements in the group). The partial

ordering is carried across and appears as reverse inclusion - one coset as a subset of

another is denoted the larger of the two. See [2] for more details on this construction.

Finally, one can see that any Coxeter group has an associated Coxeter complex

upon which to act. The collection of all cosets of all special subgroups (ordered

by reverse inclusion) behaves, in an abstract way, like the collection of cells for a

reflection group. The original terminology is preserved on this object and it too is

called a Coxeter complex.

For a Coxeter complex one can associate a distance between two chambers (or

cells in the same orbit). Recall that if S is the set of involutions for a Coxeter group

satisfying the Coxeter relations, then any word w in S is an ordered string of elements

As Coxeter complexes are transitive on chambers, then for any chambers C and C ′

there is an element w with C ′ = w · C. The distance between C and C ′ is then

`(w), the length of any shortest length word representing the same element as w. It

makes sense that infinite Coxeter groups have associated complexes with unbounded

distances.

One quite important simplicial complex is a flag complex. Given an incidence

geometry of objects of different types, the collection of all possible flags of those

objects is the desired flag complex. Here, maximal flags are the chambers for the

complex. Unfortunately not all simplicial complexes can be realized as a flag complex,

but it is known that all buildings are flag complexes.
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A.1.3 Buildings

A building is an object which builds upon the concept of the Coxeter complex.

It is a union of subcomplexes (called apartments) with the following properties: (1)

each apartment is a Coxeter complex, (2) for every two simplicies in the building

there is an apartment which contains them, and (3) any two apartments satisfying

the second property are isomorphic, and this isomorphism fixes the two simplicies. It

turns out that any two apartments in a building are isomorphic, and thus the building

is associated with a single Coxeter complex. Hence the building is associated with a

Coxeter group. Thus if one has a group acting on a simplicial complex providing the

isomorphism for the third property (so that one has a building), then there should be

a way to associate the related Coxeter group with the group on the building. This will

be the focus of this section. Also of note is that the distance between two simplicies

is well defined, the choice of an ambient apartment does not matter.

The most simple example of a building is a lone Coxeter complex. They are

called thin buildings, and anything not thin is called thick. Any co-dimension 1

cell is contained in (is ≤) exactly two chambers; for a thick building the number of

chambers will be three or more. Buildings with an associated finite simplicial complex

(and thus including thin buildings) are known as spherical buildings. This is because

one can think of the finite simplicial cells of a reflection group projected onto the

co-dimension 1 sphere for that real vector space. Further families of buildings include

affine buildings (which are generally constructed over a field with discrete valuation),

Kac-Moody buildings, and Moufang buildings. Lastly, it can be shown that a building
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is just a Coxeter complex if and only if the diameter (the maximal distance attainable

among all simplicies) is finite.

The action of the group G on the building leads to the concept of the BN-pair.

Intuitively, the associated Coxeter group should exist as a section of the group - a

quotient of the stabilizer of a complex by the stabilizer of all cells in that complex.

Define the subgroup N to be the subgroup of G which preserves some apartment, and

B the subgroup which stabilizes a chamber in that apartment (not necessarily fixing

the apartment). Their intersection, denoted T , fixes both an apartment and one of

its chambers, so as above it must act like the identity on the apartment. T is normal

in N , and W = N/T is isomorphic to the expected Coxeter group. Recall that the

chamber of a Coxeter complex corresponds to the identity of the group, so that the

co-dimension 1 cells to the chamber correspond to (have as stabilizer) groups of order

2. Thus the set of involutions S generating W are discovered.

The choice of letters for some of the subgroups come from how they can arise in

certain topological groups. B is often called the Borel subgroup, a maximal connected

solvable group, and T a maximal torus. The group W is called the Weyl group, after

the groups (which are also Coxeter groups) acting on maximal weight root systems

for Lie algebras.

Just as one can determine a Coxeter complex from a Coxeter group, one can find

a building for a group G with a BN-pair satisfying certain axioms. Define a parabolic

subgroup to be any subgroup of G which contains any conjugate of B. The building

for G associated with the BN-pair is the collection of parabolic subgroups, ordered

by reverse inclusion. One result of this way of thinking is that a group may have
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no associated buildings, or more than one non-isomorphic type of building. Also,

finite groups can have BN-pairs, and this has led to results in the classification of

finite simple groups. Lastly, one can show that a doubly transitive group is exactly

the same as a group with a BN-pair that has a Weyl group generated by a single

involution.

A motivating example of a building is the general linear group over the reals. The

standard basis for the real vector space is {e1, e2, . . . , en} The spans of non-empty

proper subsets of the basis form elements of a geometry, where the type of each

element is its dimension. The flag complex of this geometry is an apartment, and

the type of each flag is the set of types of the elements it contains. For any other

apartment, we can extract a basis {f1, f2, . . . , fn}. As any change of basis can be

found in the general linear group, we see that the group supplies the isomorphism

needed for the building axiom.

Anything stabilizing the apartment will form a permutation on cells of the same

dimension, as it would permute the flags of type {1}. Thus the subgroup N can readily

be seen to be the collection of monomial matrices, by considering the 1 dimensional

cells. Select the stabilized chamber to be the maximal flag including 〈e1〉 ⊂ 〈e1, e2〉 ⊂

· · · ⊂ 〈e1, e2, . . . , en−1〉. Then, as each subsequent subspace must be preserved, one

can see that B is the upper triangular group of matrices. Now, T = B ∩ N is the

group of diagonal matrices and N/T is the (full) set of permutation matrices. Hence

this building for the real general linear group is associated with the symmetric group

on n objects, a building of type An−1.

We look at one further example, which adds a needed idea on a different type of
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geometry which will be utilized. The real orthogonal group is the group which respects

the sum-of-squares bilinear form. Under a complex change of basis of a 2n-dimensional

space it is equivalent to the following form: 〈ei, ei+n〉 = 1 for i = 1, 2, . . . , n and all

other inner products are 0.

Definition 8. The oriflamme geometry is a geometry on totally isotropic subspaces

of dimensions 1, 2, . . . , n − 2 and two of dimension n (note that n − 1 dimensional

subspaces are excluded) in a 2n dimensional space by asserting that two objects are

incident if one is a subspace of the other or if both are n dimensional and have an

n− 1 dimensional intersection.

An example of a maximal flag in the oriflamme geometry is: {〈e1〉, 〈e1, e2〉, · · · ,

〈e1, e2, . . . , en−2〉, 〈e1, . . . , en−1, en〉, 〈e1, . . . , en−1, e2n〉}.

The BN-pair for the oriflamme geometry over SO2n gives a Dn geometry. One can

also use the standard incidence geometry on the totally isotropic subspaces. Then for

the orthogonal group O2n one gets a Bn geometry.

A.1.4 Buildings over the p-adics

Over an Archimedean field like the reals, buildings can be built using subspaces

and containment as the incidence relation. The p-adics are non-Archimedean and

thus must be dealt with in a different way.

A lattice in p-adic terms is a subset of a Qp vector space which is closed under

sums and scalar multiples in Zp. We will only consider lattices which have maximal

dimension. Every such lattice L has a basis {ei}n
i=1 for some n, so that for any vector
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v ∈ L there are scalars ci ∈ Zp with v =
∑n

i=1 ciei. Given L, by pmL we mean the

lattice with basis {pmei}n
i=1 The standard lattice, Zn

p , is the p-adic lattice over the

standard basis over n dimensions. The following proof is similar to one found in [2].

Proposition A.1.1. Given any two maximal dimensional lattices L and L′ of the

same Qp vector space, there exists a collection of vectors {ei}n
i=1 and scalars {pmi}n

i=1

such that {ei}n
i=1 is a basis for L and {pmiei}n

i=1 is a basis for L′.

Proof. There is a basis for both L and L′, and a change of basis matrix Q = (qi,j)i,j

between them. The goal will be to transform Q into a monomial matrix by a series

of elementary row and column operations. Repeat the following algorithm until the

a monomial matrix is obtained.

Find the entry qi,j with smallest norm for which there is a non-zero entry in the

same row or column. Then multiply by a series of elementary row operations on the

left and column operations on the right so that with the exception of qi,j the ith row

and jth column contain all zeros. Rows and columns where this condition already

holds will not be altered by matrices operating on different rows and columns. These

elementary operations will differ from the identity by an element from Zp, since qi,j

has smallest norm.

After repetition, we are left with a monomial matrix M = ERQEC . Here, ER

is the product of the row operations and EC the column operations. Thus Q =

E−1
R ME−1

C . Now, change the basis for L by E−1
R . Since the inverse of each elementary

row operation also takes entries in Zp, so do ER and E−1
R and the two bases span the

same lattice. Similarly, change the basis for L′ by EC . Then under the new bases,
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the change of basis from L to L′ is M , a monomial matrix. With a reordering of one

of the bases, as well as multiplying by a suitable diagonal matrix with unit entries,

the result holds.

Two lattices L and L′ are said to be equivalent if L′ = pmL for some m. A lattice

class is a set of lattices, any two of which are equivalent. By the above proposition

A.1.1, the group of automorphisms of a lattice are contained in SL(Zp). The stabilizer

of a lattice class is generated by this group as well as integral powers of p times the

identity. This motivates the determination of a type for a lattice class. Suppose L

is a member of a lattice class, and g is a matrix element which moves the standard

lattice Zn
p to L by a change of basis. Then define the type of that lattice class to be

op(det(g)) (mod p). Note that the stabilizer of this class causes the definition to be

well defined. Notice that the number of incidence classes is equal to the dimension of

the lattices, and that the type of the standard lattice is 0.

For L and L′ lattices, say that L is incident to L′ if either pL ⊂ L′ ⊂ L or

pL′ ⊂ L ⊂ L′. Note that two lattices of the same type cannot be incident. We say

that two lattice classes are incident if from each a member can be provided and these

two lattices are incident. Notice that if L and L′ are incident by the first relation,

then p2L ⊂ pL′ ⊂ pL ⊂ L′. Thus pL and L′ are incident.

Next we define what it means for two lattice classes to be incident. Suppose

that in dimension n we have n distinct lattice classes, one of each possible type,

any two of which are incident. We wish to show that there are representatives

L0, L1, L2, . . . , Ln−1 for each lattice class such that pL0 ⊂ L1, L2, . . . , Ln−1 ⊂ L0.
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Pick an L0 from the lattice class of type 0. For each k 6= 0 we have a lattice Lk of

type k from its lattice class such that either pL0 ⊂ Lk ⊂ L0 or pL0 ⊂ pLk ⊂ L0

from the definition of incident lattice classes (and the above observation). Choosing

Lk accordingly (either the original Lk or pLk) gives the desired result. Note that the

choice of index to use so that pLi and Li bound the other lattices was arbitrary.

Consider the lattice quotient L0/pL0. This is isomorphic to the n dimensional

vector space over the field of p elements. So for each k 6= 0, we have 0 ⊂ Lk/pL0 ⊂

L0/pL0 and Lk/pL0 is a proper subspace. By proposition A.1.1 under the restriction

of the incidence, there is a common basis and collection of scalars so that L0 has basis

{f1, f2, . . . , fn} and Lk has basis {pf1, pf2, . . . , pfm, fm+1, . . . , fn}. The basis elements

form a matrix g taking the standard lattice to the given lattice. So, since

op(det([f1, f2, . . . , fn])) (mod p) = 0

we have that

op(det([pf1, pf2, . . . , pfm, fm+1, . . . , fn])) (mod p) = m

Thus k = m and for each lattice Lk we have that Lk/pLk has dimension n − k (or

index k in L0/pL0). Thus pL0 ⊂ Ln−1 ⊂ Ln−2 ⊂ . . . ⊂ L1 ⊂ L0 and the quotient by

pL0 gives a chain of n subspaces over the field of p elements. This is a description of a

maximal flag. Note that with the same basis we could have defined L′k as having basis

{1
p
f1, . . . ,

1
p
fk, fk+1, . . . , fn} and considered 1

p
L0/L0, so that the dimension of L′k/L0
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is k.

For the remainder of this text we focus on p = 2 as we filter the quadratic form

through lattice quotients. Given a quadratic form Q(x) call the related quadratic

form Q̂(x). For a collection of a chain of lattices which realize a maximal flag of

lattice classes, as described above, we have the common set of vectors {f1, f2, . . . , fn}

and their scalar multiples which are the basis for the lattices. Cover the vectors of

L0/2L0 with the pre-images
∑n

i=1 aifi where ai is either 0 or 1. If the quadratic form

Q(·) (or its associated symmetric bilinear form f(·, ·)) is identically 0 on these vectors

then Q̂(x) ≡ 0. Otherwise, there is an integer r so that for any one of these 2n vectors

v we have that 2rQ(v) is a 2-adic integer, and at least one is a 2-adic unit. In this

case define Q̂(v) = 2rQ(v) mod 2. One may also use f(x, x), which differs from Q(x)

by a power of 2, and thus does not affect Q̂.

This definition is well defined as scaling the chosen L0 by powers of 2 scales

the quadratic form on the set of 2n vectors by the same power of 4. This is since

Q(ax) = a2Q(x) and the result is shifted to Zp. Also if a is a 2-adic integer then

a2 = 1 + O(22), so the choice of each fi is also independent of Q̂. Choosing any other

L0 out of its lattice class will determine the other Lk for each rank and the same

set {f1, f2, . . . , fn} will result. However, by considering a differently ranked lattice to

bookend the others, for example pLk ⊂ Lk−1 ⊂ . . . ⊂ L1 ⊂ L0 ⊂ Ln−1 ⊂ . . . ⊂ Lk, we

obtain a different Q̂. So it is the case that we will attempt to build a building with

quadratic forms based on L0/2L0.

The orthogonal (symmetric bilinear) sum-of-squares form, f(x, y) =
∑n

i=1 xiyi

(where x =
∑n

i=1 xiei and {ei} is the standard basis). It has associated quadratic
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form Q(x) = f(x, x)/2. If L0 can be taken as having the standard basis, then for

v =
∑n

i=1 aiei, with ai either 0 or 1, we have Q̂(v) =
∑n

i=1 ai mod 2 (or equivalently∑n
i=1 a2

i mod 2).

Here we need to reference the oriflamme (definition 8) geometry of orthogonal

forms to investigate the subclass of maximal flags which respect that form. Instead

of the sum-of-squares form, we will consider groups, under the change of basis found

in a previous section, which respect the equivalent skew form. We will say that the

maximal flag respects the form if that form, when filtered through the lattice class

quotients as defined above, has the same maximal Witt index.

Is it possible to find a building, and especially one of affine Dn type? If so one can

find out how generators and interesting subgroups of the group of quantum operators

move the building.

A.2 Reduction Modulo p

When p = ±1 (mod 8), 2 is a residue modulo p and so x2 − 2 has two solutions

modulo p. Thus we are able, once the choice for
√

2 is made, to embed the group

〈HP |P ∈ P2N〉 within GL2N(Fp). An immediate consequence of this observation is

that 〈HP |P ∈ P2N〉 has infinitely many normal subgroups of finite index. The same

is thus also true for SO2N(Z{1/
√

2}). It would be interesting to know what other

things can be determined from the finite factor group.

Proposition A.2.1. All elements of 〈HP |P ∈ P2N〉 of weight less than log2

√
p/2

2N
is

faithfully embedded modulo p.
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Proof. Let w0 be the smallest integer strictly less than log2

√
p/2

2N
and let 2w′

0 be the

largest even integer less than or equal to w0. Consider every integer matrix X with

XXT = 24w′0 , recalling that the special orthogonal group is an index two subgroup.

No entry of any X will exceed −22w′0 or 22w′0 . So they can be embedded modulo p

when 24w′0 < p. Note that any matrix M in the group with even weight w ≤ w′
0

gives us such an X = 2w/2M . Conversely, every X gives an element of the group

M = 2−w′0/2X.

Now let X be an integer matrix with XXT = 2w, w < log2

√
p/2

2N
. The entries of

X are bounded by ± p
2N

, and so the entries of X2 are bounded by ±p/2. Then X2 is

a matrix with even weight and the above is applicable.

We will also be able to acquire a Dn diagram quite directly for the index 2 subgroup

SO2n(Z[1/2]) by showing that the full orthogonal group over the field of 3 elements

is obtained modulo 3. From the sum-of-squares quadratic form having determinant

+1, this is the group O+
2n(3). Explicitly, all even dimensional orthogonal groups over

a finite field differing only in quadratic form, but having the same determinant, are

equivalent. If the factor group of a given group has an associated diagram, then the

corresponding subgroups of interest (including B, N , T , and the parabolics) in the

original group lead the same building and diagram. This is since the flag complex of

parabolic subgroups is acted on exactly the same.

We require the setup used in a paper by Ishibashi and Earnest [7]. The k + 2

dimensional vector space over F3 decomposes into H ⊥ L with respect to the quadratic

form Q(x) = f(x, x). H is a hyperbolic with basis {u, v} and L decomposes into



85

F3x1 ⊥ F3x2 ⊥ · · ·F3xk. For u, v, x1, x2, . . . , xk we have Q(u) = Q(v) = 0, f(u, v) = 1,

Q(x1) = −1, and Q(x2) = · · · = Q(xk) = 1. These will be explicitly constructed in

the upcoming proposition.

Some orthogonal transformations also shall be defined. ∆ swaps u and v while

fixing every vector in L, and φ(−1) sends elements in H to their negative while fixing

every vector in L. An Eichler transformation E(u, x) is defined for any x ∈ L by its

action on an element z as E(u, x)z = z+f(z, x)u−f(z, u)x−f(z, u)Q(x)u. The most

important thing to notice about Eichler transformations is that if z is orthogonal to

both u and x, then E(u, x)z = z.

Proposition A.2.2. O2n(Z[1/2]) = O+
2n(3) (mod 3) and SO2n(Z[1/2]) = SO+

2n(3)

(mod 3) for n ≥ 2.

Proof. The order of O+
4 (3) is known to be 1152. O4(Z[1/2]) contains the signed

permutation group B4, which has exactly one of {+1,−1} in each row and column

and 0 in every other entry. This subgroup is isomorphic to its image modulo 3, and

has 244! = 384 elements. Next, consider elements of O4(Z[1/2]) with all entries being

+1/2 or −1/2. Modulo 3, 1/2 = 2 = −1 and −1/2 = 1, so these elements are in 1-1

correspondence with their image. Keep the following modulo 3 matrix in mind:



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1
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Fixing the first row as all 1’s, the second (and subsequent) rows need two of both

+1 and −1 to remain orthogonal to the first. Choosing where the two 1’s land leads

to
(
4
2

)
= 6 possibilities for the second row. For the third row to be orthogonal to the

second, a {+1,−1} pair is paired for each pair of the same value in the second row.

So, with the first and second row fixed, there are
(
2
1

)(
2
1

)
= 4 choices for the third

row. The fourth row will have only 2 choices for numbers - a row and its negative.

Finally, diagonal matrices with {+1,−1} entries act on the right to permute all such

matrices, in 24 = 16 permutation blocks depending on the values of the first row.

Thus, in total, there are 6 · 4 · 2 · 16 = 768 orthogonal matrices of this form and thus

together with B4 the group has the required number of elements and is O+
4 (3).

For the even dimensions higher than 4 we note that O+
4 (3), extended by the

identity, exists as a subgroup of the image modulo 3 since the original elements of

interest can be extended by the identity.

Let {e1, e2, . . . e2n be the standard basis, so that Q(ei) = 1 and f(ei, ej) = 0 for

i and j distinct. Define the needed elements u = e1 + e2 + e3, v = e1 + e2 − e3,

x1 = e1 − e2 and xi = ei+2 for 2 ≤ i ≤ 2n− 2. Check that these satisfy the required

conditions. Extend ∆, φ(−1), and E(u, x2) as they exist in O+
4 (3) by the identity on

the new basis elements, recalling that E(u, x2)xi = xi for i > 2.

Define θ by the permutation x2 → x3 → · · · → x2n−2 → x2, which exists in the

original group as these xi’s each are a standard basis element. Next, set y2 = x2 + x3
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and y3 = x2−x3 and define θ′ by x1 → y2 → y3 → x1. Over 6 dimensions, verify that

θ′ =



−1 −1 0 −1 1 0

−1 −1 0 1 −1 0

0 0 1 0 0 0

−1 1 0 −1 −1 0

−1 1 0 1 1 0

0 0 0 0 0 1



=



1/2 1/2 0 1/2 −1/2 0

1/2 1/2 0 −1/2 1/2 0

0 0 1 0 0 0

1/2 −1/2 0 1/2 1/2 0

1/2 −1/2 0 −1/2 −1/2 0

0 0 0 0 0 1



(mod 3)

and can be extended by the identity as the later xi elements are ei+2 Thus, by the

second case of proposition 3.3 in [7], we generate the full group O+
2n(3). The subgroup

of elements of determinant 1 then demonstrate that the full special orthogonal group

is present.

Note that the proof required modulo 3 operations to show that an orthogonal

group could be found for a low dimension. If any orthogonal group can be found for a

given prime p then the results of Ishibashi and Earnest say that this group extended

by the identity together with a lone permutation will generate the full orthogonal

group for any even dimension.

A.3 Source Code

Here, basic source code is provided for decomposing an element in SO2N(Z{1/
√

2}).

This is only the basic algorithm, without the discussed speedups. The integer part of

the entries is stored in SOmat.
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# PermutationSign

# Follows each cycle and counts the number of transpositions in each

# Returns 0 or 1 depending on if the permutation is even or odd

def PermutationSign(permutation,N):

mark = [0]*N

transcount = 0;

for i in xrange(N):

while mark[i] == 0:

mark[i] = 1

i = permutation[i]

transcount = transcount + 1

transcount = transcount - 1

return (transcount % 2)

# MatrixWeight

# 2^weight = sum of squares of any row or colum

# return the weight

def MatrixWeight(SOmat, N):

sqrsum = 0

column = 1

for i in xrange(N):
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sqrsum = sqrsum + SOmat[i][column] * SOmat[i][column]

weight = 0

while 2**weight <> sqrsum:

weight = weight + 1

return weight

# ColumnWeight

# Being a column in a matrix means that the entries may be

# inflated by powers of 2, so correct this.

# 2^fullweight = sum of the squares of the column entries

# 2^diff = highest power of 2 dividing all entries in the column

# returns fullweight-diff, which is the weight of just the column

def ColumnWeight(column, SOmat, N):

sqrsum = 0

for i in xrange(N):

sqrsum = sqrsum + SOmat[i][column] * SOmat[i][column]

weight = 0

while 2**weight <> sqrsum:

weight = weight + 1

diff = 0

done = 0

while 1:
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for i in xrange(N):

if ((SOmat[i][column] >> diff) % 2) <> 0:

done = 1

if done == 1:

break

diff = diff + 1

weight = weight - 2*diff

return weight

# AdjustMatrix

# After an operation, the matrix may not be reduced.

# Find the largest power of 2 dividing all entries.

# Scale the matrix by this power of 2

def AdjustMatrix(SOmat, N):

diff = 0

done = 0

while 1:

for i in xrange(N):

for j in xrange(N):

if ((SOmat[i][column] >> diff) % 2) <> 0:

done = 1
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if done == 1:

break

diff = diff + 1

for i in xrange(N):

for j in xrange(N):

SOmat[i][j] = SOmat[i][j] >> diff

def ReduceColumn(column, previouscolumn, needspair, pairs, SOmat, N):

while ColumnWeight(column, SOmat, N) > 0:

# Find the highest power of 2 dividing each entry in the column

diff = 0

done = 0

while 1:

for i in xrange(N):

if ((SOmat[i][column] >> diff) % 2) <> 0:

done = 1

if done == 1:

break

diff = diff + 1

# Determine the type of row for each element in this column

# up to the highest power of 2 dividing each entry

type = [’unk’]*N

for i in xrange(N):



92

if ((SOmat[i][column] >> diff) % 2) == 0:

type[i] = ’even’

if ((SOmat[i][column] >> diff) % 2) == 1:

type[i] = ’odd’

# Start filling the permutation with already paired rows

permutation = [0]*N

permidx = 0

for i in pairs:

type[i] = ’paired’

permutation[permidx] = i

permidx = permidx + 1

# When working on a column paired with one which has already been

# reduced, the previous column may now be unreduced and have

# entries in 2 rows. This happens every other column reduction.

if needspair and (ColumnWeight(previouscolumn, SOmat, N) <> 0):

for i in extrapairs:

type[i] = ’paired’

permutation[permidx] = i

permidx = permidx + 1

# Make pairs out of the remaining ’even’ and ’odd’,

# placing them in the permutation
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for kind in [’even’, ’odd’]:

for i in xrange(N):

if type[i] == kind:

permutation[permidx] = i

permidx = permidx + 1

# The extrapairs which will be needed in the next column reduction.

if needspair and (ColumnWeight(previouscolumn, SOmat, N) == 0):

lonelypair = 0

while SOmat[lonelypair][previouscolumn] == 0:

lonelypair = lonelypair + 1

idx = 0

while permutation[idx] <> lonelypair:

idx = idx + 1

# Find the number next to it in the permutation

if (idx % 2) == 0:

matchedpair = permutation[idx+1]

if (idx % 2) == 1:

matchedpair = permutation[idx-1]

extrapairs = [lonelypair, matchedpair]

# If the created permutation is odd, make it even (alternating)

if PermutationSign(permutation, N) == 1:
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temp = permutation[0]

permutation[0] = permutation[1]

permutation[1] = temp

# Apply the hadamard wrt the permutation

permidx = 0

while permidx < N:

for i in xrange(N):

temp1 = SOmat[permutation[permidx]][i]

+ SOmat[permutation[permidx+1]][i]

temp2 = SOmat[permutation[permidx]][i]

- SOmat[permutation[permidx+1]][i]

SOmat[permutation[permidx]][i] = temp1

SOmat[permutation[permidx+1]][i] = temp2

permidx = permidx + 2

# Remove extra powers of 2

AdjustMatrix(SOmat, N)

# End of main loop - when the column weight is > 0

# When an even number of columns have been reduced, one gets a new

# permanent row pairing
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if needspair:

lonelypair = 0

while SOmat[lonelypair][previouscolumn] == 0:

lonelypair = lonelypair + 1

pairs.append(lonelypair)

matchedpair = 0

while SOmat[matchedpair][column] == 0:

matchedpair = matchedpair + 1

pairs.append(matchedpair)

# Given N, the dimension (even)

# Given SOmat, an N by N matrix with the property that

# SOmat * SOmat^T = 2^w * IdentityMat

pairs = []

previouscolumn = -1

needspair = 0

for column in xrange(N):

ReduceColumn(column, previouscolumn, needspair, pairs, SOmat, N)

needspair = 1 - needspair

previouscolumn = column
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