5.3 Improper Integrals (part 2)

Business application:

Recall the accumulated present value of a continuous income stream

R = yearly rate for c.i.s. (or R(t) if it changes over time)

T = years for investment

k = interest rate

Question: what would the present value be if one did not just invest for T years, but perpetually?

$$B = \int_{0}^{\infty} Re^{-kt} dt$$

This is the accumulated present value of a c.i.s. for all time into the future.

This is also known as the capital value.

Example: A rental property nets \$1200/year paid into perpetuity.

Find the accumulated present value at 4% compounded continuously.

$$R = 1200 \quad k = .04$$

$$B = \int_{0}^{\infty} 1200e^{-.04t} dt$$

$$= \lim_{b \to \infty} \int_{0}^{b} 1200e^{-.04t} dt$$

$$= \lim_{b \to \infty} \frac{1200}{-.04}e^{-.04t} \int_{0}^{b}$$

$$= \lim_{b \to \infty} \frac{-30000e^{-.04b}}{-.04b} - (-30000e^{0})$$

$$= \lim_{b \to \infty} (-30000e^{-.04b}) - (-30000e^{0})$$

$$= \lim_{b \to \infty} (-30000e^{-.04b}) - (-30000e^{0})$$