R.4 Slope and Linear Functions (Point-Slope + Cost Analysis)

R.5 Nonlinear Functions and Models

Point-Slope Equation

$$y - y_i = m (x - x_i)$$

where point = (x_i, y_i)
slope = m

Example: Find the line with slope m=2 continuing point (3,1)

$$y-1=2(x-3)$$

 $y-1=2x-6$
 $y=2x-5$

With two points, first find the slope.

Next, use a point and the slope to find the line.

Example: Find the line continaing points (3,2) and (5,0)

$$M = \frac{y_z - y_1}{x_z - x_1} = \frac{0 - 2}{5 - 3} = \frac{-2}{2} = -1$$

$$m = -1$$
 $y = -1$
 y

Special Lines:

Horizontal

Vertical

Slope:

m = 🛇

m is undefined

Equation:

y= value

X= Value

Picture:

Application of Lines - Cost Analysis

$$C(x) = Productron Costs$$
 $C(x) = mx + b$

where

 $x = \pm of units$
 $m = marginal cost per unit$
 $b = fixed cost$

Example: The cost of stamping one DVD is \$0.20. The machine to do it costs \$100,000.

$$m = {}^{4}0.20$$
 $b = {}^{1}100,000$ $C(x) = 0.20x + 100,000$

$$R(x) = R_{e_{Ve,A}ve}$$

$$R(x) = px$$

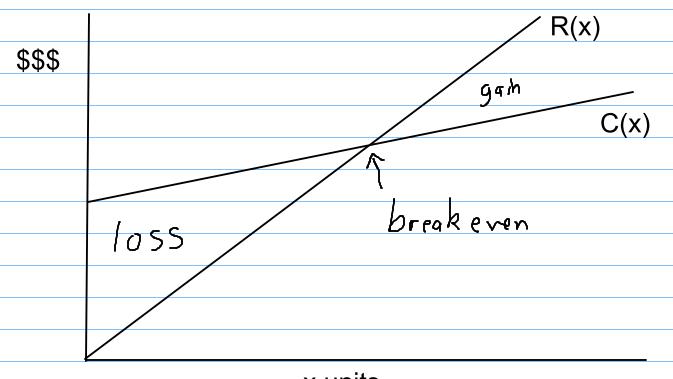
$$where$$

$$x = \# of uni+$$

$$p = price per uni+$$

$$P(x) = Profit$$

$$P(x) = R(x) - (x)$$



$$x$$
 units

breakeven when

 $R(x) = C(x)$

Example: Red Dye #3 sells for \$15 per gallon. Materials to make it costs \$10 per gallon, and the mixer costs \$1000 as a fixed cost. Question: How many gallons need to sell to break even? h = 10 b = 1000 R(x) = 15 R(x) = 15

$$m = 10$$
 $b = 1000$ $p = 15$ $C(x) = 10x + 1000$ $R(x) = 15x$

$$(x) = R(x)$$
 $|O_x + 1000 = 15x$
 $|000 = 5x$
 $|000 = 15x$
 $|$

R.5 Nonlinear Functions and Models

A linear function can be represented as

$$f(x) = ax + b (a \neq 0)$$

A quadratic function can be represented as
$$f(x) = ax^2 + bx + c$$
 $(a \ne 0)$

parabola The graph of a quadratic function is a

The maximum / minimum point of a panbola is called its vertex.

For $y = f(x) = ax^2 + bx + c$ the vertex occurs at

$$x = \frac{-b}{2a}$$

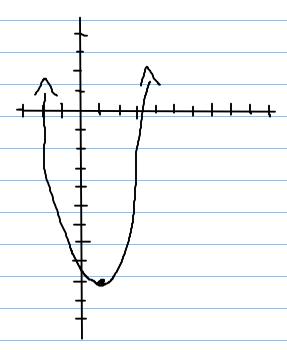
$$y = f(x) = f\left(\frac{-b}{2a}\right)$$

The graph opens up if α down if a < ○

Example: Sketch $f(x) = x^2 - 2x - 8$

$$x = -\frac{b}{2a} = -\frac{(-2)}{2(1)} = \frac{2}{2} = 1$$

$$y = f(1) = 1^2 - 2(1) - 8 = -9$$



The Quadratic Formula

Used to solve the equation:

$$ax^2 + bx + c = \bigcirc$$

Example: Find the zeros of x^2-2x-8 $\alpha = b=-2$ c=-8

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-8)}}{2(1)}$$

$$=\frac{2^{\pm}\sqrt{4+32}}{2}$$

$$=\frac{2\pm\sqrt{36}}{2}$$

$$= 2 \pm 6$$

$$x = \frac{2+6}{2}$$
 or $\frac{2-6}{2}$ $x = 4$ or -2

Note: The online homework does not have the \pm symbol. Always enter in two answers, the + and - answers.

Recall how to simplify square roots.

Ex.
$$\sqrt{18} = \sqrt{2(3 \cdot 3)} = 3\sqrt{2}$$

 $\sqrt{28} = \sqrt{2(3 \cdot 7)} = 2\sqrt{7}$
 $\sqrt{60} = \sqrt{2 \cdot 2 \cdot 3 \cdot 5} = 2\sqrt{15}$

Quadratic Formula and Graphs

$$y = ax^{2} + bx + c$$

and $0 = ax^{2} + bx + c$

So
$$y = 0$$

These are the roots or x-intercepts of the graph.

vertex =
$$(1,-9)$$

zeros x = -2 , -4

