13.2 Fundamental Counting Principle

THE FUNDAMENTAL COUNTING PRINCIPLE (FCP) If we want to perform a series of tasks and the first task can be done in a ways, the second can be done in b ways, the third can be done in c ways, and so on, then all the tasks can be done in $a \times b \times c \times \cdots$ ways.

At an Ice Cream shop they have 5 different flavors of ice cream and you can pick one of 4 toppings.

How many choices do you have?

At an Ice Cream shop they have 5 different flavors of ice cream and you can pick one of 4 toppings.

How many choices do you have?

5 choices of flavors,
4 choices of toppings
$5 \times 4=20$

How many ways can you flip 4 coins?

How many ways can you flip 4 coins?

The $1^{\text {st }}$ coin can be flipped 2 ways. The $2^{\text {nd }}$ coin can be flipped 2 ways. The $3^{\text {rd }}$ coin can be flipped 2 ways. The $4^{\text {th }}$ coin can be flipped 2 ways.

Someone wants to know how many

 different outfits they can make with 3 coats, 5 pants, 7 shirts, and 4 ties.How many different outfits?

Someone wants to know how many different outfits they can make with 3 coats, 5 pants, 7 shirts, and 4 ties.

Task	Number of Ways to Perform Task
Select coat	3
Select pants	5
Select shirt	7
Select tie	4

A useful way to keep track of the different number of ways to do each task is called a slot diagram.

1st	2nd task		3rd task	4th task	5th task		
Number of ways	\times	Number of ways	\times	Number of ways	\times		Number
:---:							
of ways	\times	Number					
:---:							
of ways							

We'll use underscores for the slots.

Example:

The combination for a keypad is 5 digits long. Suppose that you any digit (0-9) for the numbers.

How many different combinations are there?

Example:

The combination for a keypad is 5 digits long. Suppose that you any digit (0-9) for the numbers.

1st task	2nd task		3rd task	4th task	5th task
$\mathbf{1 0}$	\times	$\mathbf{1 0}$	\times	$\mathbf{1 0}$	\times
Use any digit	Use any digit		Use any digit	Use any digit	Use any digit

There are $10 \times 10 \times 10 \times 10 \times 10=100000$ combinations.

Example:

The combination for a keypad is 5 digits long. Suppose that you any digit (0-9) for the numbers. Now, the first digit cannot be 0 .

How many different combinations are there?

Example:

The combination for a keypad is 5 digits long. Suppose that you any digit (0-9) for the numbers. Now the first digit cannot be 0 .

$\begin{aligned} & \text { 1st } \\ & \text { task } \end{aligned}$		2nd task		3rd task		$\begin{aligned} & \text { 4th } \\ & \text { task } \end{aligned}$		$\begin{gathered} \text { 5th } \\ \text { task } \end{gathered}$
9	\times	10	\times	10	\times	10	\times	10
$\begin{aligned} & \text { Can't } \\ & \text { use } 0 \end{aligned}$		Use any digit						

There are $9 \times 10 \times 10 \times 10 \times 10=90000$ combinations.

Example: A license plate has 3 letters followed by three numbers.

How many different license plates are there?

Example: A license plate has 3 letters followed by three numbers.

How many different license plates are there?
$\underline{26} \times \underline{26} \times \underline{26} \times \underline{10} \times \underline{10} \times \underline{10}$
$=17,576,000$

Example: A license plate has 3 letters followed by three numbers. Every letter and number must now be unique.

How many different license plates are there?

Example: A license plate has 3 letters followed by three numbers. Every letter and number must now be unique.

How many different license plates are there?
$\underline{26} \times \underline{2} \times \underline{24} \times \underline{10} \times \underline{9} \times \underline{8}$
$=11,232,000$

