13.2 Complements and Unions of Events

A sample space is a set.
An event is a set.

The idea of this section is to combine the ideas of sets with probability.

We will use complements, unions, and intersections.

Recall:

The complement of a set is the collection of elements not in that set. $A^{\prime}=\{$ elements not in $A\}$

The complement of an event E, is the collection of outcomes not in E. $E^{\prime}=\{$ outcomes not in E \}

If an outcome is in the sample space, it must be in E or E^{\prime}.

So E and E' give all outcomes.
So $P(E)+P\left(E^{\prime}\right)=1 \quad$ (100\%)
COMPUTING THE PROBABILITY OF THE COMPLEMENT OF AN
EVENT If E is an event, then $P\left(E^{\prime}\right)=1-P(E)$.
Sample space (\boldsymbol{S})
E^{\prime} has probability $1-P(E)$.

A drug was administered.
The probability that the person got better was 0.28. (28\%)

What is the probability that the person did not get better?

A drug was administered.
The probability that the person got better was 0.28. (28\%)

What is the probability that the person did not get better?

$$
\begin{aligned}
P\left(E^{\prime}\right) & =1-P(E) \\
& =1-0.28 \\
& =0.72
\end{aligned}
$$

A single card is removed from a deck.
What is the probability that it is not the Jack of Clubs?

A single card is removed from a deck.
What is the probability that it is not the Jack of Clubs?

E = Jack of Clubs
$P(E)=1 / 52$
E' = not Jack of Clubs
$P\left(E^{\prime}\right)=1-1 / 52=52 / 52-1 / 52=51 / 52$

Complements of Events

- Example: The graph shows the party affiliation of a group of voters. If we randomly select a person from this group, what is the probability that the person has a party affiliation?

Percent of voters according to party affiliation
(continued on next slide)

Complements of Events

- Solution: Let A be the event that the person we select has some party affiliation. It is simpler to calculate the probability of A^{\prime}. Since 23.7\% have no party affiliation,
\boldsymbol{A}^{\prime} Do not have party affiliation

Complements of Events

- Solution: Let A be the event that the person we select has some party affiliation. It is simpler to calculate the probability of A^{\prime}. Since 23.7\% have no party affiliation,

$$
P(A)=1-P\left(A^{\prime}\right)=1-0.237=0.763 .
$$

Word problems:

OR means union
Heart or Ace Heart U Ace

AND means intersection
Heart and Ace
Heart \cap Ace

Unions of Events

RULE FOR COMPUTING THE PROBABILITY OF A UNION OF TWO

 EVENTS If E and F are events, then$$
P(E \cup F)=P(E)+P(F)-P(E \cap F) .
$$

If E and F have no outcomes in common, they are called mutually exclusive events. In this case, because $E \cap F=\varnothing$, the preceding formula simplifies to

$$
P(E \cup F)=P(E)+P(F)
$$

One card was drawn from a deck.
What is the probability that it was a Heart or an Ace?

One card was drawn from a deck.
What is the probability that it was a Heart or an Ace?
$P($ Heart $)=13 / 52$
$P($ Ace $)=4 / 52$
$P($ Heart \cap Ace $)=1 / 52$ only "Ace of Hearts"

One card was drawn from a deck.

What is the probability that it was a Heart or an Ace?
$P($ Heart $)=13 / 52$
$P($ Ace $)=4 / 52$
$P($ Heart \cap Ace $)=1 / 52$
$P($ Heart U Ace $)=P($ Heart $)+P($ Ace $)$

- P(Heart \cap Ace)
$=16 / 52=4 / 13$

Unions of Events

- Example: If we select a single card from a standard 52-card deck, what is the probability that we draw either a heart or a face card?
- Solution: Let H be the event "draw a heart" and F be the event "draw a face card." We are looking for $P(H \cup F)$.

Unions of Events

There are 13 hearts, 12 face cards, and 3 cards that are both hearts and face cards.

Where the two events intersect, outcomes contribute twice to the probability of $E \cup F$.

$$
\begin{aligned}
& P(H \cup F)=P(H)+P(F)-P(H \cap F)=\frac{13}{52}+\frac{12}{52}-\frac{3}{52}=\frac{22}{52}=\frac{11}{26} \\
& \text { probability of a heart } \\
& \text { that is a face card }
\end{aligned}
$$

If you are given 3 out of the 4 terms in the equation

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

Then you can use algebra to find the remaining term.

This can also be read as

$$
P(E \text { or } F)=P(E)+P(F)-P(E \text { and } F)
$$

The probability a UT student is

- an Education major is 0.09.
- an Ed. major and in athletics is 0.01
- in Ed or athletics is 0.12 .

What is the probability that a UT student is in athletics?

The probability a UT student is

- an Education major is 0.09.
- an Ed. major and in athletics is 0.01
- in Ed or athletics is 0.12 .

What is the probability that a UT student is in athletics?

$$
\begin{aligned}
P(\text { Ed or ath }) & =P(\text { Ed })+P(\text { ath })-P(\text { Ed or ath }) \\
0.12 & =0.09+P(\text { ath })-0.01 \\
0.12 & =0.08+P(\text { ath }) \\
0.04 & =P(\text { ath })
\end{aligned}
$$

The probability of a person being

- happy is 0.45
- a millionaire is 0.02
- happy or a millionaire is 0.46

What is the probability that a person is happy and a millionaire?

The probability of a person being

- happy is 0.45
- a millionaire is 0.02
- happy or a millionaire is 0.46

What is the probability that a person is happy and a millionaire?
$\mathrm{P}($ happy or $\$ \$ \$)=$
$P($ happy $)+P(\$ \$ \$)-P($ happy and \$\$\$)
$0.46=0.45+0.02-\mathrm{P}(\mathrm{H}$ and $\$ \$ \$)$
$0.46=0.47-\mathrm{P}(\mathrm{H}$ and $\$ \$ \$)$
$P(H$ and $\$ \$ \$)=0.01$

