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7.1. Outline of Lecture

• General Theory of nth Order Linear Equations.
• Homogeneous Equations with Constant Coefficients.

7.2. General Theory of nth Order Linear Equations

An nth order linear differential equation is an equation of the form

(7.1) L[y] = y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = g(t).

Since the equation involves the nthe derivative of y, therefore to obtain
a unique solution, it is necessary to specify n initial conditions

(7.2) y(t0) = y0, y′(t0) = y′0, . . . , y(n−1)(t0) = y
(n−1)
0 .

The mathematical theory associated with Eq. (7.1) is completely anal-
ogous to that for the second order linear equation. Therefore we simply
state the results for the nth order problem.

Theorem 7.3. If the functions p1, p2, . . . , pn, and g are continuous on
the open interval I, then there exists exactly one solution y = φ(t) of
the differential equation (7.1) that also satisfies the initial conditions
(7.2). The solution exists throughout the interval I.

7.2.1. The Homogeneous Equation.

As in the corresponding second order problem, we first discuss the
homogeneous equation

(7.4) L[y] = y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = 0.
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If the functions y1, y2, . . . , yn are solutions of Eq. (7.4), then it follows
by direct computation that the linear combination

(7.5) y = c1y1(t) + c2y2(t) + · · ·+ cnyn(t),

where c1, . . . , cn are arbitrary constants, is also a solution of Eq. (7.4).
We define the Wronskian of the solutions y1, . . . , yn by the deter-

minant

(7.6) W (y1, . . . , yn) =
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Theorem 7.7. If the functions p1, p2, . . . , pn are continuous on the
open interval I, if the functions y1, y2, . . . , yn are solutions of Eq. (7.4),
and if W (y1, y2, . . . , yn)(t) 6= 0 for at least one point in I, then every
solution of Eq. (7.4) can be expresses as a linear combination of the
solutions y1, y2, . . . , yn.

A set of solutions y1, . . . , yn of Eq. (7.4) whose Wronskian is nonzero
is referred to as a fundamental set of solutions. Since all solutions
of Eq. (7.4) are of the form (7.5), we use the term general solution
to refer to any arbitrary linear combination of any fundamental set of
solutions of Eq. (7.4).

7.2.2. Linear Dependence and Independence.

We now explore the relationship between fundamental sets of solutions
and the concept of linear independence.

The functions f1, f2, . . . , fn are said to be linearly dependent on
an interval I if there exists a set of constants k1, k2, . . . , kn, not all zero,
such that

(7.8) k1f1(t) + k2f2(t) + · · ·+ knfn(t) = 0

for all t in I. The functions f1, . . . , fn are said to be linearly inde-
pendent on I if they are not linearly dependent there. We look into
an example.

Example 1. Determine whether the functions f1(t) = 1, f2(t) = 2 +
t, f3(t) = 3− t2, and f4(t) = 4t+ t2 are linearly independent or depen-
dent on any interval I.

Solution 1. We form the linear combination

k1f1(t)+k2f2(t)+k3f3(t)+k4f4(t) = k1+k2(2+t)+k3(3−t2)+k4(4t+t
2)

= (k1 + 2k2 + 3k3) + (k2 + 4k4)t+ (−k3 + k4)t
2.
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This expression is zero throughout an interval provided that

k1 + 2k2 + 3k3 = 0, k2 + 4k4 = 0, −k3 + k4 = 0.

These three equations, with four unknowns, have many nontrivial so-
lutions. For instance, if k4 = 1, then k3 = 1, k2 = −4, and k1 = 5.
Thus the given functions are linearly dependent on every interval.

We now present the theorem describing the relation between linear
independence and fundamental sets of solutions.

Theorem 7.9. If y1(t), . . . , yn(t) is a fundamental set of solutions of
Eq. (7.4)

(7.10) L[y] = y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = 0

on an interval I, then y1(t), . . . , yn(t) are linearly independent on I.
Conversely, if y1(t), . . . , yn(t) are linearly independent solutions of Eq.
(7.4) on I, then they form a fundamental set of solutions of I.

7.2.3. The Nonhomogeneous Equation.

Consider the nonhomogeneous equation (7.1)

(7.11) L[y] = y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = g(t).

It follows that any solution of the above equation can be written as

(7.12) y = c1y1(t) + c2y2(t) + · · ·+ cnyn(t) + Y (t),

where y1, . . . , yn is fundamental set of solutions of the corresponding
homogeneous equation and Y is some particular solution of the nonho-
mogeneous equation (7.1). The linear combination (7.12) is called the
general solution of the nonhomogeneous equation (7.1).

7.3. Homogeneous Equations with Constant Coef-
ficients

Consider the nth order linear homogeneous differential equation

(7.13) L[y] = a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0,

where a0, a1, . . . , an are real constants. From our knowledge of second
order linear equations with constant coefficients, it is natural to antic-
ipate that y = ert is a solution of Eq. (7.13) for suitable values of r.
Indeed,

(7.14) L[ert] = ert(a0r
n + a1r

n−1 + · · ·+ an−1r + an) = ertZ(r)

for all r, where

(7.15) Z(r) = a0r
n + a1r

n−1 + · · ·+ an−1r + an.
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The polynomial Z(r) is called the characteristic polynomial, and
the equation Z(r) = 0 is the characteristic equation of the dif-
ferential equation (7.13). A polynomial of degree n has n zeros, say
r1, r2, . . . , rn, some of which may be equal; hence we can write the
characteristic polynomial in the form

(7.16) Z(r) = a0(r − r1)(r − r2) · · · (r − rn).

Now we look at all the three possibilities of the nature of the roots.

7.3.1. Real and Unequal Roots.

If the roots of the characteristic equation are real and no two are equal,
then we have n distinct solutions er1t, er2t, . . . , ernt of Eq. (7.13). If
these functions are linearly independent(check Wronskian), then the
general solution of Eq. (7.13) is

(7.17) y = c1e
r1t + c2e

r2t + · · ·+ cne
rnt.

7.3.2. Complex Roots.

If the characteristic equation has complex roots, they must occur in
conjugate pairs, λ±iµ, since the coefficients a0, . . . , an are real numbers.
Provided that none of the roots are repeated, the general solution of Eq.
(7.13) is still of the form (7.17). Similar to the second order equation,
we can replace the complex valued solutions e(λ+iµ)t and e(λ−iµ)t by the
real-valued solutions

(7.18) eλt cosµt, eλt sinµt

7.3.3. Repeated Roots.

If the roots of the characteristic equation are not distinct, that is if
some of the roots are repeated, then we have to look at the multiplicity
of the root. For an equation of order n, if a root of Z(r) = 0, say
r = r1, has multiplicity s (where s ≤ n), then

(7.19) er1t, ter1t, t2er1t, . . . , ts−1er1t

are corresponding solutions of Eq. (7.13).
If a complex root λ+iµ is repeated s times, the complex conjugates

λ − iµ is also repeated s times. Corresponding to these 2s complex
valued solutions, we can find 2s real valued solutions by noting that
the real and imaginary parts of e(λ+iµ)t, te(λ+iµ)t, . . . , ts−1e(λ+iµ)t are also
linearly independent solutions:

eλt cosµt, eλt sinµt, teλt cosµt, teλt sinµt,

. . . , ts−1eλt cosµt, ts−1eλt sinµt.
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Let’s look into an example below.

Example 2. Find the general solution of the given differential equa-
tion.

(7.20) y′′′ − 3y′′ + 7y′ − 5y = 0.

Solution 2. The characteristic equation of the above differential equa-
tion is given by

(7.21) Z(r) = r3 − 3r2 + 7r − 5 = 0

Substituting r = 1, it can be verified that Z(1) = 0, hence r = 1 is
a root of Z(r). Since (r − 1) is a factor of Z(r), hence by the Factor
Theorem, the other factor can be found by dividing Z(r) by (r − 1).
The other factor is r2− 2r+ 5 whose roots are 1± 2i. Hence the three
roots of Eq. (7.20) are

(7.22) et, et cos 2t, et sin 2t.

Therefore the general solution of Eq. (7.20) is given by

(7.23) y = c1e
t + c2e

t cos 2t+ c3e
t sin 2t.

for arbitrary constants c1, c2, c3.


