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4.1. Outline of Lecture

• The Existence and the Uniqueness Theorem
• Homogeneous Equations with Constant Coefficients

4.2. The Existence and the Uniqueness Theorem

We have looked at the existence and uniqueness theorem for nonlinear
equations in the previous lecture. However verifying the theorem espe-
cially for nonlinear equations require solving the initial value problem.
In general, finding a solution is not feasible because there is no method
of solving the differential equation that applies in all cases.

Therefore for the general case, it is necessary to adopt an indirect
approach that demonstrates the existence of a solution. The heart of
this method is the construction of a sequence of functions that con-
verges to a limit function satisfying the initial value problem, although
the members of the sequence individually do not.

We note that it is sufficient to consider the problem in which the
initial point is the origin; that is we consider the problem

(4.1) y′ = f(t, y), y(0) = 0.

If some other initial point is given, then we can always make a prelim-
inary change of variables, corresponding to a translation of the coor-
dinate axes, that will take the given point to the origin. We can thus
modify the existence and uniqueness theorem in the following way.

Theorem 4.2. If f and ∂f/∂y are continuous in a rectangle R : |t| ≤
a, |y| ≤ b, then there is some interval |t| ≤ h ≤ a in which there exists
a unique solution y = φ(t) of the initial value problem (4.1).
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For the method of proof, it is necessary to transform the initial value
problem (4.1) into a more convenient form. If we suppose temporarily
that there is a differentiable function y = φ(t) that satisfies the initial
value problem, then f [t, φ(t)] is a continuous function of t only. Hence
we can integrate y′ = f(t, y) from the initial point t = 0 to an arbitrary
value of t, obtaining

(4.3) φ(t) =

∫ t

0

f [s, φ(s)] ds

where we have made use of the initial condition φ(0) = 0. The above
equation is called an integral equation.

One method of showing that the integral equation (4.3) has a unique
solution is known as the method of successive approximations or
Picard’s iteration method.

We start by choosing an initial function φ0. The simplest choice is

(4.4) φ0(t) = 0

then φ0 at least satisfies the initial condition in Eq. (4.1), although
presumable not the differential equation. The next approximation φ1

is obtained by substituting φ0(s) for φ(s) in the right side of Eq. (4.3)
and calling the result of this operation φ1(t). Thus

(4.5) φ1(t) =

∫ t

0

f [s, φ0(s)] ds.

Similarly, φ2 is obtained from φ1,

(4.6) φ2(t) =

∫ t

0

f [s, φ1(s)] ds.

and, in general,

(4.7) φn+1(t) =

∫ t

0

f [s, φn(s)] ds.

In this manner we generate a sequence of functions {φn} = φ0, φ1, . . . , φn, . . . .
We look into this infinite sequence in the next example.

Example 1. Solve the initial value problem

(4.8) y′ = ty + 1, y(0) = 0

by the method of successive approximations.

Solution 1. If y = φ(t) is the solution then the corresponding integral
equation is

(4.9) φ(t) =

∫ t

0

(sφ(s) + 1) ds
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If the initial approximation is φ0(t) = 0, it follows that

(4.10) φ1(t) =

∫ t

0

(sφ0(s) + 1) ds =

∫ t

0

ds = t.

Similarly,

(4.11) φ2(t) =

∫ t

0

(sφ1(s) + 1) ds =

∫ t

0

(s2 + 1) ds =
t3

3
+ t.

and

(4.12) φ3(t) =

∫ t

0

(sφ2(s)+1) ds =

∫ t

0

(
s4

3
+s2 +1) ds =

t5

3 · 5
+
t3

3
+ t.

Equations (4.10), (4.11), and (4.12) suggest that

(4.13) φn(t) = t+
t3

3
+

t5

3 · 5
+ . . .+

t2n−1

3 · 5 · · · (2n− 1)

for each n ≥ 1, and this result can be established by mathematical
induction (Try it!).

It follows from Eq. (4.13) that φn(t) is the nth partial sum of the
infinite series

(4.14)
∞∑
k=1

t2k−1

3 · 5 · · · (2k − 1)

hence limn→∞ φn(t) exists if and only if the series (4.14) converges.
Applying the ratio test, we see that, for each t,

(4.15)

∣∣∣∣t2k+1 · 3 · 5 · · · (2k − 1)

3 · 5 · · · (2k + 1) · t2k−1

∣∣∣∣ =
t2

2k + 1
→ 0 as k →∞

Thus the series (4.14) converges for all t, and its sum φ(t) is the limit
of the sequence {φn(t)}. We can verify by direct substitution that

φ(t) =
∑∞

k=1
t2k−1

3·5···(2k−1) is a solution of the integral equation (4.14).

4.3. Homogeneous Equations with Constant Coef-
ficients

We now shift our focus to second order equations. A second order
ordinary differential equation has the form

(4.16)
d2y

dt2
= f(t, y,

dy

dt
),
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where f is some given function. Equation (4.16) is said to be linear if
the function f has the form

(4.17) f(t, y,
dy

dt
) = g(t)− p(t)dy

dt
− q(t)y,

where g, p, and q are specified functions of the independent variable t
but do not depend on y. In this case we usually rewrite Eq. (4.16) as

(4.18) y′′ + p(t)y′ + q(t)y = g(t),

Instead of Eq. (4.18), we often see the equation

(4.19) P (t)y′′ +Q(t)y′ +R(t)y = G(t).

If P (t) 6= 0, we can divide Eq. (4.19) by P (t) and thereby obtain Eq.
(4.18) with

(4.20) p(t) =
Q(t)

P (t)
, q(t) =

R(t)

P (t)
, g(t) =

G(t)

P (t)
.

If Eq. (4.16) is not of the form (4.18) or (4.19), then it is called non-
linear.

An initial value problem consists of a differential equation such as
Eq. (4.16), or (4.18) together with a pair of initial conditions

(4.21) y(t0) = y0, y′(t0) = y′0

where y0 and y′0 are given numbers prescribing values for y and y′ at
the initial point t0. Since we have a second order differential equation
therefore, roughly speaking two integrations are required to find a so-
lution and each integration introduces an arbitrary constant. Hence
we have two initial conditions.

A second order linear equation is said to be homogeneous if the
term g(t) in Eq. (4.18) is zero for all t. Otherwise the equation is called
nonhomogeneous. Therefore a homogeneous equation is of the form

(4.22) y′′ + p(t)y′ + q(t)y = 0

In this section we will concentrate our attention on equations in which
the functions P,Q and R are constants. In this case Eq. (4.19) becomes

(4.23) ay′′ + by′ + cy = 0

where a, b and c are given constants.
We now see how we can solve the above equation. We start by

seeking exponential solutions of the form y = ert, where r is a parameter
to be determined. Then it follows that y′ = rert and y′′ = r2ert. By
substituting these expressions for y, y′, and y′′ in Eq. (4.23) we obtain

(4.24) (ar2 + br + c)ert = 0
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Since ert 6= 0,

(4.25) ar2 + br + c = 0

Equation (4.25) is called the characteristic equation for the differ-
ential equation (4.23). Solving this quadratic equation gives us two
roots r1 and r2. In this section we consider the case when both r1 and
r2 are real and r1 6= r2. Then the two solutions are y1(t) = er1t and
y2(t) = er2t. Therefore

(4.26) y = c1y1(t) + c2y2(t) = c1e
r1t + c2e

r2t

is also a solution of Eq. (4.23) for arbitrary constants c1 and c2. We
look into an example below which illustrates the method.

Example 2. Find the solution of the initial value problem

(4.27) y′′ + 5y′ + 6y = 0, y(0) = 2, y′(0) = 3.

Solution 2. We assume that y = ert, and it then follows that r must
be a root of the characteristic equation

(4.28) r2 + 5r + 6 = (r + 2)(r + 3) = 0.

Thus the possible values of r are r1 = −2 and r2 = −3; the general
solution of Eq. (4.27) is

(4.29) y = c1e
−2t + c2e

−3t.

To satisfy the first initial condition, we set t = 0 and y = 2 in Eq.
(4.29); thus c1 and c2 must satisfy

(4.30) c1 + c2 = 2.

To use the second initial condition, we must first differentiate Eq.
(4.29). This gives y′ = −2c1e

−2t − 3c2e
−3t. Then, setting t = 0 and

y′ = 3, we obtain

(4.31) −2c1 − 3c2 = 3.

By solving Eqs. (4.30) and (4.31), we find that c1 = 9 and c2 = −7.
Therefore the solution of the initial value problem (4.27) is

(4.32) y = 9e−2t − 7e−3t

Note that as t→∞, the solution y → 0. In general as t increases,
the magnitude of the solution either tends to zero (when both expo-
nents are negative) or else grows rapidly (when at least one exponent
is positive).


