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3.1. Outline of Lecture

• Differences Between Linear and Nonlinear Equations
• Exact Equations and Integrating Factors

3.2. Differences between Linear and Nonlinear Equa-
tions

We have looked at first order equations so far, both linear and nonlin-
ear. We have developed methods of solving linear equations and some
subclasses of nonlinear equations. We now discuss some important
ways in which nonlinear equations differ from linear ones.

• Existence and Uniqueness of Solutions. So far, we have
discusses a number of initial value problems, each of which had
a solution and apparently only one solution. This raises the
question whether every initial value problem has exactly one
solution. The answer to this question is given by the following
theorem.

Theorem 3.1. If the functions p and g are continuous on
an open interval I : α < t < β containing the point t = t0,
then there exists a unique function y = φ(t) that satisfies the
differential equation

(3.2)
dy

dt
+ p(t)y = g(t)

for each t in I, and that also satisfies the initial condition has
a unique solution.

(3.3) y(t0) = y0

1
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where y0 is an arbitrary prescribed initial value.

Note that Theorem 3.1 states that the given initial value
problem has a solution and also that the problem has only
one solution. In other words, the theorem asserts both the
existence and uniqueness of the solution of the solution of the
initial value problem.

We apply this theorem in the next example.

Example 1. Find an interval in which the initial value prob-
lem

(3.4) (t− 3)y′ + (ln t)y = 2t, y(1) = 2

Solution 1. Rewriting the above equation in the standard
form, we have

y′ +
ln t

t− 3
y =

2t

t− 3

So p(t) =
ln t

t− 3
and g(t) =

2t

t− 3
. g is continuous for all

t 6= 3. p is continuous for all t 6= 0, 3. Therefore p and g
are both continuous on the interval (−∞, 0) ∪ (0, 3) ∪ (3,∞).
The interval (0, 3) contains the initial point t = 1. Therefore
Theorem 3.1 guarantees that the problem has a unique solution
on the interval 0 < t < 3.

We now turn our attention to nonlinear differential equa-
tions and modify Theorem 3.1 by a more general theorem.

Theorem 3.5. Let the function f and ∂f/∂y be continuous
in some rectangle α < t < β, γ < t < δ containing the point
(t0, y0). Then, in some interval t0 − h < t < t0 + h containing
in α < t < β, there is a unique solution y = φ(t) of the initial
value problem

(3.6) y′ = f(t, y), y(t0) = y0.

This is a more general theorem since it reduces to Theorem
3.1 if the differential equation is linear. For then f(t, y) =
−p(t)y + g(t) and ∂f(t, y)/∂y = −p(t), so the continuity of f
and ∂f/∂y is equivalent to the continuity of p and g in this
case.

Note that the conditions stated in Theorem 3.5 are suf-
ficient to guarantee the existence of a unique solution of the
initial value problem (3.6) in some interval t0−h < t < t0 +h,
but they are not necessary. That is, the conclusion remains
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true under slightly weaker hypotheses about the function f .
In fact, the existence of solution (but not its uniqueness) can
be established on the basis of the continuity of f alone.

We look at an example below making use of the above
theorem.

Example 2. Solve the given initial value problem and deter-
mine how the interval in which the solution exists depends on
the initial value y0.

(3.7) y′ = −4t

y
, y(0) = y0

Solution 2. For this equation f = −4t/y and ∂f/∂y = 4t/y2.
f and ∂f/∂y are continuous in any rectangle where y 6= 0.
This is also a separable equation. Cross multiplication makes
the equation separable for integration.∫

y dy =

∫
−4t dt

Integrating both sides we have,

(3.8)
y2

2
= −2t2 + C

for some constant C. Using the initial values we have C = y20/2.
Using this value for C and simplifying both sides we have

y = ±
√
−4t2 + y20

However we would like to find out the interval where the solu-
tion exists. The term inside the radical has to be non-negative.
Therefore 4t2 < y20 or |t| < |y0|/2. By Theorem 3.5, we get the
extra condition that y0 6= 0 (Since f and ∂f/∂y are continuous
in any rectangle where y 6= 0 containing the point (0, y0)).

Therefore the solution looks like

(3.9) y = ±
√
−4t2 + y20, y0 6= 0, |t| < |y0|/2.

Now let’s look at some other differences between linear and
nonlinear equations.
• Interval of Definition. According to Theorem 3.1, the solu-

tion to a linear equation (3.2) subject to the initial condition
y(t0) = y0, exists throughout any interval about t = t0 in which
the functions p and g are continuous.

On the other hand, for a nonlinear initial value problem
satisfying the hypotheses of Theorem 3.5, the interval in which
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a solution exists may be difficult to determine. This is be-
cause it is not so easy to determine the solution y = φ(t) of a
nonlinear equation unlike a linear equation.
• General Solution. Another way in which linear and nonlin-

ear equations differ concerns the concept of general solution.
For a first order linear equation it is possible to obtain

a solution containing one arbitrary constant, from which all
possible solutions follow by specifying values for this constant
as we have seen in the previous lecture.

For nonlinear equations this is not the case; even though a
solution containing an arbitrary constant may be found, there
may be other solutions that cannot be obtained by giving val-
ues to this constant.
• Implicit Solutions. The solution for an initial value problem

of a first order linear equation provides an explicit formula for
the solution y = φ(t).

However for a nonlinear equation, the solution is implicit
in nature, of the form F (t, y) = 0.

3.3. Exact Equations and Integrating Factors

In this section we look at a different class of nonlinear equations known
as exact equations for which there is also a well-defined method of
solution. We define an exact equation in the next theorem along with
another result.

Theorem 3.10. Let the functions M,N,My, and Nx, where subscripts
denote partial derivatives, be continuous in the rectangular region R :
α < x < β, γ < y < δ. Then

(3.11) M(x, y) +N(x, y)y′ = 0

is an exact differential equation in R if and only if

(3.12) My(x, y) = Nx(x, y)

at each point of R. That is, there exists a function ψ satisfying

(3.13) ψx(x, y) = M(x, y), ψy(x, y) = N(x, y),

if and only if M and N satisfy Eq. (3.12).

To find the expression for the solution to the equation (3.11) we see
that,

(3.14) M(x, y) +N(x, y)y′ =
∂ψ

∂x
+
∂ψ

∂y

dy

dx
=

d

dx
ψ(x, y)
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Therefore Eq. (3.11) becomes

(3.15)
d

dx
ψ(x, y) = 0.

Hence the solution to Eq. (3.11) is given implicitly by

(3.16) ψ(x, y) = C.

for an arbitrary constant C. Let’s illustrate the above theorem in the
next example.

Example 3. Determine whether the equation is exact. If it is exact,
find the solution.

(3.17) (3x2 − 2xy + 2) dx+ (6y2 − x2 + 3) dy = 0.

Solution 3. M(x, y) = 3x2 − 2xy + 2 and N(x, y) = 6y2 − x2 + 3.
Therefore My(x, y) = −2x and Nx(x, y) = −2x. Since they are the
same, hence Eq. (3.17) is exact. Thus there is a ψ(x, y) such that

ψx(x, y) = 3x2 − 2xy + 2.

ψy(x, y) = 6y2 − x2 + 3.

Integrating the first of these equations with respect to x, we obtain

(3.18) ψ(x, y) = x3 − x2y + 2x+ h(y).

Differentiating the above equation with respect to y, we obtain,

ψy(x, y) = −x2 + h′(y).

Setting ψy = N gives

−x2 + h′(y) = 6y2 − x2 + 3.

Thus h′(y) = 6y2 + 3 and h(y) = 2y3 + 3y. The constant of inte-
gration can be omitted since any solution of the preceding equation is
satisfactory. Substituting for h(y) in Eq. (3.18) gives

(3.19) ψ(x, y) = x3 − x2y + 2x+ 6y2 − x2 + 3.

Hence solutions of Eq. (3.17) are given implicitly by

(3.20) x3 − x2y + 2x+ 6y2 − x2 + 3 = C.

A valid question to ask now is what happens when the initial equa-
tion isn’t exact. In that situation it is sometimes possible to convert
it into an exact equation by multiplying the equation by a suitable
integrating factor µ(x, y).

Unfortunately even though integrating factors are powerful tools
for solving differential equations, in practice they can be found only in
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special cases. The most important situations in which simple integrat-
ing factors can be found occur when µ is a function of only one of the
variables x or y, instead of both.

If (My −Nx)/N is a function of x only, then there is an integrating
factor µ that also depends on x and it satisfies the differential equation

(3.21)
dµ

dx
=
My −Nx

N
µ

If (Nx−My)/M is a function of y only, then there is an integrating
factor µ that also depends on y and it satisfies the differential equation

(3.22)
dµ

dy
=
Nx −My

M
µ

Finally we look into an example in which the equation is not exact
to begin with but is made exact by multiplying with an integrating
factor.

Example 4. Find an integrating factor for the equation

(3.23) (3xy + y2) + (x2 + xy)y′ = 0.

and then solve the equation.

Solution 4. Here M(x, y) = 3xy + y2 and N(x, y) = x2 + xy. My 6=
Nx, therefore the differential equation isn’t exact. We compute (My −
Nx)/N and find that

My −Nx

N
=

3x+ 2y − (2x+ y)

x2 + xy
=

1

x
.

Thus there is an integrating factor µ that is a function of x only, and
it satisfies the differential equation

(3.24)
dµ

dx
=
µ

x

Solving the above differential equation we have µ(x) = x. Multiplying
Eq. (3.23) by this integrating factor, we obtain

(3.25) (3x2y + xy2) + (x3 + x2y)y′ = 0.

This equation is exact. Therefore there exists a function ψ(x, y), such
that

ψx(x, y) = 3x2y + xy2.

ψy(x, y) = x3 + x2y.

Integrating the first of these equations with respect to x, we obtain

(3.26) ψ(x, y) = x3y +
x2y2

2
+ h(y).
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Differentiating the above equation with respect to y, we have

ψy(x, y) = x3 + x2y + h′(y).

Setting ψy = N gives

x3 + x2y + h′(y) = x3 + x2y.

Therefore h′(y) = 0, hence h(y) = C = 0. We can choose this constant
to be zero since any solution of the preceding equation is satisfactory.
Substituting for h(y) in Eq. (3.26) gives

(3.27) ψ(x, y) = x3y +
x2y2

2
.

Hence solutions of Eq. (3.23) are given implicitly by

(3.28) x3y +
x2y2

2
= C.


