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13.1. Outline of Lecture

• Series Solutions near an Ordinary Point, Part II.
• Euler Equations.

13.2. Series Solutions near an Ordinary Point, Part
II.

In the previous lecture, we considered the problem of finding solutions
of

(13.1) P (x)y′′ +Q(x)y′ +R(x)y = 0,

where P,Q, and R are polynomials, in the neighborhood of an ordinary
point x0. Assuming that Eq. (13.1) does have a solution y = φ(x) and
that φ has a Taylor series

(13.2) y = φ(x) =
∞∑
n=0

an(x− x0)n,

which converges for |x − x0| < ρ, where ρ > 0, we found an can be
determined by directly substituting the series (13.2) for y in Eq. (13.1).

We now consider how we might justify the statement that if x0 is
an ordinary point of Eq. (13.1) then there exists solutions of the form
(13.2).

Suppose there is a solution of Eq. (13.1) of the form (13.2). By
differentiating Eq. (13.2) m times and setting x equal to x0 we have

(13.3) m!am = φ(m)(x0).

Hence, to compute an from the above expression, we need to determine
φ(n)(x0) for n = 0, 1, 2, . . ..
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To compute φ(n)(x0), we use the original differential equation (13.1).
Since φ is a solution of Eq. (13.1), we have

(13.4) P (x)φ′′(x) +Q(x)φ′(x) +R(x)φ(x) = 0.

We can find φ′′(x) from the above equation

(13.5) φ′′(x) = −p(x)φ′(x)− q(x)φ(x),

where p(x) = Q(x)/P (x) and q(x) = R(x)/P (x). Setting x equal to x0
in Eq. (13.5) gives

(13.6) φ′′(x0) = −p(x0)φ′(x0)− q(x0)φ(x0).

From here we can find a2 since

(13.7) 2!a2 = φ′′(x0) = −p(x0)φ′(x0)− q(x0)φ(x0).

It can be easily checked that φ′(x0) = a1 and φ(x0) = a0. Therefore

(13.8) 2!a2 = φ′′(x0) = −p(x0)a1 − q(x0)a0.
To determine a3, we differentiate Eq. (13.5) and set x equal to x0,
obtaining

(13.9) 3!a3 = φ′′′(x0) = −2!p(x0)a2 − [p′(x0) + q(x0)]a1 − q′(x0)a0.
As we see from above to compute the remaining an’s we have to com-
pute infinitely many derivatives of p and q. Unfortunately, this con-
dition is too weak to ensure that we can prove the convergence of the
resulting series expansion for y = φ(x). What is needed is to assume
that the functions p and q are analytic at x0.

With this we can generalize the definitions of an ordinary point
and singular point of Eq. (13.1) as follows: if the functions p = Q/P
and q = R/P are analytic at x0, then the point x0 is said to be an
ordinary point of the differential equation (13.1); otherwise it is a
singular point.

Now we shift our focus to finding the interval of convergence of the
series solution. We look into a theorem which answers the question for
a wide class of problems.

Theorem 13.10. If x0 is an ordinary point of the differential equation
(13.1)

(13.11) P (x)y′′ +Q(x)y′ +R(x)y = 0,

that is, if p = Q/P and q = R/P are analytic at x0, then the general
solution of Eq. (13.1) is

(13.12) y =
∞∑
n=0

an(x− x0)n = a0y1(x) + a1y2(x),
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where a0 and a1 are arbitrary, and y1 and y2 are two power series
solutions that are analytic at x0. The solutions y1 and y2 form a fun-
damental set of solutions. Further, the radius of convergence for each
of the series solutions y1 and y2 is at least as large as the minimum of
the radii of convergence of the series for p and q.

We will not prove this theorem, here however, there is an easier way
to compute the lower bound of the radius of convergence of the series
solution when P,Q and R are polynomials. We present it in the next
two results.

13.2.1. Result 1

The ratio of two polynomials, say, Q/P , has a convergent power series
expansion about a point x = x0 if P (x0) 6= 0.

13.2.2. Result 2

If any factors common to Q and P have been canceled, then the radius
of convergence of the power series of Q/P about the point x0 is precisely
the distance from x0 to the nearest root of P .

We use these results in the form of an example below.

Example 1. Determine a lower bound for the radius of convergence of
the series solution about the given point x0, for the given differential
equation.

(13.13) (x2 − 2x− 3)y′′ + xy′ + 4y = 0; x0 = 4.

Solution 1. The roots of P (x) = x2 − 2x − 3 are 3 and −1. The
nearest root to x0 = 4 is the root 3 and the distance is 1. Hence the
lower bound for the radius of convergence of the series solution of the

differential equation is 1, i.e. the series solution
∞∑
n=0

an(x−4)n converges

for at least |x− 4| < 1.

13.3. Euler Equations.

In this section we will begin to consider how to solve equations of the
form

(13.14) P (x)y′′ +Q(x)y′ +R(x)y = 0,

in the neighborhood of a singular point x0, i.e. where P (x0) = 0.
Instead of looking at any general equation, we will only consider a
special type of second order equation called the Euler equation in this
lecture.
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13.3.1. Euler Equations.

A simple differential equation that has a singular point is the Euler
equation

(13.15) x2y′′ + αxy′ + βy = 0,

where α and β are real constants.
To solve a equation of this type our initial assumption of a solution

would be y = xr for any constant r. Substituting back into Eq. (13.15)
we have

x2(xr)′′ + αx(xr)′ + βxr = 0.

xr[r(r − 1) + αr + β] = 0.

We call the quadratic equation in r

(13.16) r(r − 1) + αr + β = r2 + (α− 1)r + β = 0

the characteristic equation. Based on the roots r1 and r2 of Eq. (13.16),
we have the following solutions of Eq. (13.15).

• If r1 and r2 are real and r1 6= r2, the general solution is

(13.17) y = c1|x|r1 + c2|x|r2 .
• If r1 and r2 are real and r1 = r2, the general solution is

(13.18) y = c1|x|r1 + c2|x|r1 ln |x|.
• If r1 and r2 are complex then let r1 = λ+ iµ and r2 = λ− iµ,

the general solution is

(13.19) y = c1|x|λ cos(µ ln |x|) + c2|x|λ sin(µ ln |x|).
for arbitrary constants c1 and c2 which can be determined with
initial conditions.

We present an example of an Euler equation below.

Example 2. Determine the general solution of the given differential
equation that is valid in any interval not including the singular point.

(13.20) x2y′′ − xy′ + y = 0

Solution 2. For this Euler equation α = −1 and β = 1. Hence the
characteristic equation is

(13.21) r2 − 2r + 1 = 0

whose root 1 is repeated. Hence the general solution is

(13.22) y = c1|x|+ c2|x| ln |x|.
for arbitrary constants c1 and c2.


