
Series Solutions of Second
Order Linear Equations

Lecture 12
Dibyajyoti Deb

12.1. Outline of Lecture

• Review of Power Series.
• Series Solutions near an Ordinary Point, Part I.

12.2. Review of Power Series.

Our goal from the very beginning has been to find the solution of a gen-
eral second order equation without any restrictions to the coefficients
or the forcing functions. In this regard we have given a systematic
procedure for constructing solutions if the equation has constant co-
efficients. To deal with the much larger class of equations that have
variable coefficients, it is necessary to extend our search for solutions
beyond the familiar elementary functions of calculus. The principal
tool that we need is the representation of a given function by a power
series.

In this section we start by looking at some basic properties of power
series.

12.2.1. Quick review of Power Series.

1. A power series
∞∑
n=0

an(x− x0)n is said to converge at a point x

if

(12.1) lim
m→∞

m∑
n=0

an(x− x0)n

exists for that x. The series certainly converges for x = x0; it
may converge for all x, or it may converge for some values of
x and nor for others.
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2. The series
∞∑
n=0

an(x − x0)n is said to converge absolutely at a

point x if the series

(12.2) |
∞∑
n=0

an(x− x0)n| =
∞∑
n=0

|an||(x− x0)n|

converges. A thing to note is that absolute convergences im-
plies convergence but not the other way around.

3. One of the most useful tests for the absolute convergence of a
power series is the ratio test. If an 6= 0, and if, for a fixed
value of x,

(12.3) lim
n→∞

∣∣∣∣∣an+1(x− x0)n+1

an(x− x0)n

∣∣∣∣∣ = |x− x0| lim
n→∞

∣∣∣∣∣an+1

an

∣∣∣∣∣ = |x− x0|L,

then the power series converges absolutely at that value of x if
|x − x0|L < 1 and diverges if |x − x0|L > 1. If |x − x0|L = 1,
the test is inconclusive.

4. If the power series
∞∑
n=0

an(x − x0)
n converges for x = x1, it

converges absolutely for |x− x0| < |x1 − x0|; and if it diverges
at x = x1, it diverges for |x− x0| > |x1 − x0|.

5. There is a nonnegative number ρ, called the radius of con-

vergence, such that
∞∑
n=0

an(x − x0)n converges absolutely for

|x − x0| < ρ and diverges for |x − x0| > ρ. For a series that
converges only at x0, we define ρ to be zero; for a series that
converges for all x, we say that ρ is infinite. If ρ > 0, then the
interval |x− x0| < ρ is called the interval of convergence.

6. The value of an is given by

(12.4) an =
f (n)(x0)

n!
.

The series is called the Taylor series for the function f about
x = x0.

7. A function f that has a Taylor series expansion about x = x0

(12.5) f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n,

with radius of convergence ρ > 0, is said to be analytic at
x = x0.
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We look into couple of examples below.

Example 1. For which values of x does the power series

(12.6)
∞∑
n=1

(−1)n+1n(x− 3)n

converge?

Solution 1. We use the ratio test. We have

(12.7) lim
n→∞

∣∣∣∣∣(−1)n+2(n+ 1)(x− 3)n+1

(−1)n+1n(x− 3)n

∣∣∣∣∣ = |x−3| lim
n→∞

n+ 1

n
= |x−3|.

According to statement 3, the series converges absolutely for |x−3| < 1,
or 2 < x < 4, and diverges for |x− 3| > 1, or x > 4 and x < 2. To find
what happens at x = 2 and x = 4 we substitute these values back into
the original power series to see that both the series diverges since the
nth term does not approach zero as n→∞. Hence the series converges
in the open interval (2, 4).

Example 2. Determine the radius of convergence of the power series

(12.8)
∞∑
n=0

n

2n
xn

Solution 2. We apply the ratio test. We have

(12.9) lim
n→∞

∣∣∣∣∣(n+ 1)x(n+1)

2n+1

2n

nxn

∣∣∣∣∣ =
|x|
2

lim
n→∞

n+ 1

n
=
|x|
2
.

Thus the series converges absolutely for |x| < 2, or −2 < x < 2, and
diverges for |x| > 2 or x > 2 and x < −2. At the endpoints x = 2 and
x = −2, the series diverges since the nth term does not approach zero
as n→∞. The radius of convergence of the power series is ρ = 2.

12.3. Series Solutions near an Ordinary Point, Part
I.

In previous sections we described methods of solving second order lin-
ear differential equations with constant coefficients. We now consider
methods of solving second order linear equations when the coefficients
are functions of the independent variable. It is sufficient to consider
the homogeneous equation

(12.10) P (x)y′′ +Q(x)y′ +R(x)y = 0
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since the procedure for the corresponding nonhomogeneous equation is
similar.

For the present, suppose that P,Q and R are polynomials and that
they have no common factors. Suppose that we wish to solve Eq.
(12.10) in the neighborhood of a point x0.

A point x0 such that P (x0) 6= 0 is called an ordinary point. Since
P is continuous, it follows that there is an interval about x0 in which
P (x) is never zero. In this section we will find series solutions to Eq.
(12.10) near an ordinary point x0.

On the other hand, if P (x0) = 0, then x0 is called a singular point
of Eq. (12.10). We look into an example directly.

Example 3. Find a series solution of the equation

(12.11) y′′ − xy′ − y = 0

Solution 3. Here P (x) = 1, Q(x) = −x and R(x) = −1. Hence we
could pick out ordinary point to be x0 = 0 and find a solution near
this point. We look for a solution in the form of a power series about
x0 = 0

(12.12) y = a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · =
∞∑
n=0

anx
n

and assume that the series converges in some interval |x| < ρ. Differ-
entiating Eq. (12.12) term by term yields

(12.13) y′ = a1 + 2a2x+ · · ·+ nanx
n−1 + · · · =

∞∑
n=1

nanx
n−1

(12.14)

y′′ = 2a2 + 2 · 3a3x+ · · ·+ n(n− 1)anx
n−2 + · · · =

∞∑
n=2

n(n− 1)anx
n−2

Substituting the series (12.13) and (12.14) for y and y′′ and y in (12.11)
gives

(12.15)
∞∑
n=2

n(n− 1)anx
n−2 − x

∞∑
n=1

nanx
n−1 −

∞∑
n=0

anx
n = 0

∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=1

nanx
n +

∞∑
n=0

anx
n
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Shifting the index of the term on the left and shifting the first term on
the right so that both n starts from zero, we have,

(12.16)
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n =

∞∑
n=0

nanx
n +

∞∑
n=0

anx
n

Note the goal here is to make the index and the degree of x on all the
three summations to be the same. We do this here by making the index
n start from zero and the degree of x being n throughout.

Equating the coefficient of xn from both sides we have,

(12.17) (n+ 2)(n+ 1)an+2 = nan + an = (n+ 1)an.

Simplifying we have our recurrence relation,

(12.18) (n+ 2)an+2 = an.

or

(12.19) an+2 =
an

n+ 2

Since an+2 is given in terms of an, the a’s are determined in steps of two.
Thus a0 determines a2, which in turn determines a4, . . .; a1 determines
a3 which in turn determines a5, . . .. For the even numbered coefficients
we have

(12.20) a2 =
a0
2
, a4 =

a2
4

=
a0

2 · 4
, a6 =

a4
6

=
a0

2 · 4 · 6
, . . .

These results suggest that in general, if n = 2k, then

(12.21) an = a2k =
a0

2 · 4 · 6 · . . . · 2k
=

a0
2kk!

, k = 1, 2, 3, . . .

Similarly, for the odd-numbered coefficients we have

(12.22) a3 =
a1
3
, a5 =

a3
5

=
a1

3 · 5
, a7 =

a5
7

=
a1

3 · 5 · 7
, . . .

Similarly these results suggest that in general, if n = 2k + 1, then

(12.23) an = a2k+1 =
a1

3 · 5 · 7 · . . . · 2k + 1
=

2kk!a1
(2k + 1)!

Substituting these coefficients into Eq. (12.12), we have

y = a0+a1x+
a0
2
x2+

a1
3
x3+

a0
222!

x4+
222!a1

5!
x5+· · ·+ a0

2nn!
x2n+

2nn!a1
(2n+ 1)!

x2n+1+· · ·

= a0

[
1 +

1

2
x2 +

1

222!
x4 + · · ·+ 1

2nn!
x2n + · · ·

]

+a1

[
x+

1

3
x3 +

222!

5!
x5 + · · ·+ 2nn!

(2n+ 1)!
x2n+1

]
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= a0

∞∑
n=0

1

2nn!
x2n + a1

∞∑
n=0

2nn!

(2n+ 1)!
x2n+1

It is easy to see by ratio test that both of these series converge for all
x (Check it!).


