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10.1. Outline of Lecture

• Step Functions.
• Differential Equations with Discontinuous Forcing Functions.

10.2. Step Functions.

In this section we look at functions which have jump discontinuities.
Differential equations whose right side is a function of this type fre-
quently arise in the analysis of the flow of current in electric circuits
or the vibrations of mechanical systems. We develop some additional
properties of Laplace transform in this section and the next which will
help us in the solution of such problems.

To deal with functions with jump discontinuities we introduce a
function known as the unit step function or Heaviside function.
This function is denoted by uc and is defined for c ≥ 0 by

uc(t) =

{
0, t < c,

1, t ≥ c

We want to write a piecewise continuous function in a more ”com-
pact” manner with the help of the step function in order to find its
Laplace transform. We look into an example below where we do this.

Example 1. Consider the function

f(t) =


2, 0 ≤ t < 2,

5, 2 ≤ t < 5,

−3, 5 ≤ t < 9,

3, t ≥ 9
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Express f(t) in terms of uc(t).

Solution 1. We start with the function f1(t) = 2 which agrees with
f(t) on [0, 2). To produce the jump of three units (going from 2 to 5)
at t = 2, we add 3u2(t) to f1(t), obtaining

(10.1) f2(t) = 2 + 3u2(t).

which agrees with f(t) on [0, 7). The negative jump of eight units
(going from 5 to -3) at t = 5 corresponds to adding −8u5(t), which
gives

(10.2) f3(t) = 2 + 3u2(t)− 8u5(t).

Finally to get the positive jump of six units (going from -3 to 3) at
t = 9, we add 6u9(t). Thus we obtain

(10.3) f(t) = 2 + 3u2(t)− 8u5(t) + 6u9(t).

The Laplace transform of uc is easily determined

(10.4) L{uc(t)} =

∫ ∞
0

e−stuc(t) dt =

∫ c

0

e−stuc(t) dt+

∫ ∞
c

e−stuc(t) dt

(10.5) =

∫ ∞
c

e−st dt =
e−cs

s
, s > 0.

For a given function f defined for t ≥ 0, we will often want to consider
the related function g defined by

(10.6) y = g(t) =

{
0, t < c,

f(t− c), t ≥ c,

In terms of the unit step function we can write g(t) in the convenient
form

(10.7) g(t) = uc(t)f(t− c).
We look into the first theorem where we find the Laplace transform of
g(t).

Theorem 10.8. If F (s) = L{f(t)} exists for s > a ≥ 0, and if c is a
positive constant, then

(10.9) L{uc(t)f(t− c)} = e−csL{f(t)} = e−csF (s), s > a.

Conversely, if f(t) = L−1{F (s)}, then
(10.10) uc(t)f(t− c) = L−1{e−csF (s)}.

Proof. Check the text book. �

We look into an example which uses this theorem.
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Example 2. Find the inverse transform of

(10.11) G(s) =
2e−2s

s2 − 4

Solution 2.
(10.12)

L−1{G(s)} = L−1{ 2e−2s

s2 − 4
} = L−1{e−2s 2

s2 − 4
} = L−1{e−2sF (s)}

where F (s) =
2

s2 − 4
. By the converse of Theorem 10.8,

(10.13) L−1{e−2s 2

s2 − 4
} = u2(t)f(t− 2)

where f(t) = L−1{ 2

s2 − 4
} = sinh 2t.

Therefore f(t− 2) = sinh(2(t− 2)) = sinh(2t− 4). Hence

(10.14) L−1{G(s)} = u2(t) sinh(2t− 4).

We look into another theorem that contains another very useful
property of Laplace transform that is somewhat analogous to the pre-
vious theorem.

Theorem 10.15. If F (s) = L{f(t)} exists for s > a ≥ 0, and if c is
a constant, then

(10.16) L{ectf(t)} = F (s− c), s > a+ c.

Conversely, if f(t) = L−1{F (s)}, then
(10.17) ectf(t) = L−1{F (s− c)}.

Proof.

L{ectf(t)} =

∫ ∞
0

e−st · ectf(t) dt =

∫ ∞
0

e−(s−c)tf(t) dt = F (s− c).

�

We look into an example which uses the above theorem.

Example 3. Find the inverse transform of

(10.18) G(s) =
3!

(s− 2)4

Solution 3.

(10.19) G(s) =
3!

(s− 2)4
= F (s− 2)
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where F (s) =
3!

s4
.

L−1{F (s)} = L−1{ 3!

s4
} = t3 = f(t) by the converse of Theorem 10.15.

By Theorem 10.15,

(10.20) L−1{G(s)} = L−1{F (s− 2)} = e2tt3.

10.3. Differential Equations with Discontinuous Forc-
ing Functions.

In this section we turn our attention to solving differential equations
in which the nonhomogeneous term is discontinuous. We look into an
example below.

Example 4. Find the solution of the given initial value problem.
(10.21)

y′′ + y = f(t); y(0) = 0, y′(0) = 1, f(t) =

{
1, 0 ≤ t ≤ 3π

0, 3π ≤ t <∞

Solution 4. Using the step function

(10.22) f(t) = 1− u3π(t).

Therefore the equation becomes

(10.23) y′′ + y = 1− u3π(t).

(10.24) L{y′′}+ L{y} = L{1} − L{u3π(t)}

s2L{y} − sy(0)− y′(0) + L{y} =
1

s
− e−3πs

s

s2L{y} − 1 + L{y} =
1

s
− e−3πs

s

L{y}(s2 + 1) =
1

s
− e−3πs

s
+ 1

L{y} =
1

s(s2 + 1)
− e−3πs

s(s2 + 1)
+

1

s2 + 1

y = L−1{ 1

s(s2 + 1)
} − L−1{ e−3πs

s(s2 + 1)
}+ L−1{ 1

s2 + 1
}

We use partial fractions(Check Lecture Notes 9) to write

(10.25)
1

s(s2 + 1)
=

1

s
− s

s2 + 1
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Therfore

y = L−1{1

s
}−L−1{ s

s2 + 1
}−L−1{e−3πs1

s
}−L−1{e−3πs s

s2 + 1
}+L−1{ 1

s2 + 1
}

By Theorem 10.8,

(10.26) L−1{e−3πs1

s
} = u3π(t)f(t− 3π).

and

(10.27) L−1{e−3πs s

s2 + 1
} = u3π(t)g(t− 3π).

where f(t) = L−1{1

s
} = 1 and g(t) = L−1{ s

s2 + 1
} = cos t. Therefore

L−1{e−3πs1

s
} = u3π(t)f(t− 3π) = u3π(t).

and

L−1{e−3πs s

s2 + 1
} = u3π(t)g(t− 3π) = u3π(t) cos(t− 3π).

Therefore the solution to the differential equation is

(10.28) y = 1− cos t− u3π(t)− u3π(t) cos(t− 3π) + sin t.

Since cos(t− 3π) = cos t, therefore

(10.29) y = 1− cos t− u3π(t)− u3π(t) cos t+ sin t.


