
Manual for MATH 3860, Spring 2012

Instructor : Dibyajyoti Deb

Disclaimer: This manual is in no way a short cut to learning
differential equations. You will still need to understand the theory
from the text book to succeed in the exams. What I have in this
manual is a collection of all the different techniques that we have

learnt in this course to just solve differential equations.
Throughout this manual t and x will be the independent variable and

y(n) =
dny

dtn
and y(n) =

dny

dxn
respectively.
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1.1. First Order Linear Equations

1.1.1. General Form

(1.1) P (t)y′ +Q(t)y = G(t).

1.1.2. How to solve it?

• Write the general form as

(1.2) y′ + p(t)y = g(t),

by dividing both sides by P (t).
• Find the integrating factor

µ(t) = e

∫
p(t) dt

• Multiply both sides of Eq. (1.2) with µ(t)

µ(t)y′ + µ(t)p(t)y = µ(t)g(t),

Left side becomes,

(µ(t)y)′ = µ(t)g(t)

• Integrate both sides to get,

µ(t)y =

∫
µ(t)g(t) dt+ C,

where C is an arbitrary constant which can be determined if
there is an initial condition.

1.1.3. An example

Check Example 1 from Lecture 2.

1.2. Separable Equations

1.2.1. General Form

(1.3) M(x) +N(y)
dy

dx
= 0.

Here M is a function of the independent variable x and N is a
function of y.
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1.2.2. How to solve it?

• Write the general form as

(1.4) M(x) dx+N(y) dy = 0,

• Integrate both sides and write the final constant(from both
integrals) on the right side.∫

M(x) dx+

∫
N(y) dy = C,

where C is an arbitrary constant which can be determined if
there is an initial condition.

1.2.3. An example

Check Example 2 from Lecture 2.

1.3. Exact Equations

1.3.1. General Form

Exact equations are usually neither separable nor linear. Their
general form is

M(x, y) +N(x, y)
dy

dx
= 0

which satisfies

(1.5) My(x, y) = Nx(x, y)

This also means that there exists a function ψ such that,

(1.6) ψx(x, y) = M(x, y) ψy(x, y) = N(x, y).

1.3.2. How to solve it?

• Check (1.5) to verify that the given equation is exact.
• Therefore

(1.7) ψx(x, y) = M(x, y)

and

(1.8) ψy(x, y) = N(x, y)

for some function ψ.
• Integrate (1.7) (with respect to x) to get

(1.9) ψ(x, y) =

∫
M(x, y) dx+ h(y),
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• Differentiate both sides with respect to y to get

(1.10) ψy(x, y) =
∂Q(x, y)

∂y
+ h′(y)

where Q(x, y) =

∫
M(x, y) dx.

• Therefore

(1.11)
∂Q(x, y)

∂y
+ h′(y) = N(x, y)(since both are equal to ψy(x, y))

• Therefore

(1.12) h′(y) = N(x, y)− ∂Q(x, y)

∂y

which should be a function of y only. h(y) can be found by
integrating both sides of Eq. (1.12).

(1.13) h(y) =

∫ (
N(x, y)− ∂Q(x, y)

∂y

)
dy

• So substituting h(y) back in Eq. (1.9) we have

(1.14) ψ(x, y) =

∫
M(x, y) dx+

∫ (
N(x, y)− ∂Q(x, y)

∂y

)
dy

The solution of the differential equation is of the form

(1.15) ψ(x, y) = C.

for any arbitrary constant C.

1.3.3. An example

Check Example 3 from Lecture 3.

1.4. Non exact to Exact equation

1.4.1. General Form

Sometimes it’s possible to convert an equation that is not exact into
an exact equation by multiplying with an integrating factor µ(x, y).

(1.16) M(x, y) +N(x, y)
dy

dx
= 0,

however,

(1.17) My(x, y) 6= Nx(x, y)
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1.4.2. How to solve it?

• Find

(1.18) Q =
My −Nx

N
and R =

Nx −My

M
• If Q is a function of only x, then set

(1.19)
dµ

dx
= Q(x)µ

and solve for µ (it’s a separable equation).
• If R is a function of only y, then set

(1.20)
dµ

dy
= R(y)µ

and solve for µ (it’s a separable equation).
• Note that either Q being a function of only x or R being a

function of only y is enough to find µ (don’t need both at the
same time).
• After finding µ, multiply both sides of Eq. (1.16) by µ

(1.21) µM(x, y) + µN(x, y)
dy

dx
= 0

which will make it an exact equation and earlier methods can
be used to solve it.

1.4.3. An example

Check Example 4 from Lecture 3.

1.5. Second order linear homogeneous equations
with constant coefficients

1.5.1. General Form

(1.22) ay′′ + by′ + cy = 0,

where a, b and c are constants.

1.5.2. How to solve it?

• Form the characteristic equation

(1.23) ar2 + br + c = 0

• Solve Eq. (1.23) to find the two roots r1 and r2.
– If r1 and r2 are real and r1 6= r2, the general solution is

(1.24) y = c1e
r1t + c2e

r2t
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– If r1 and r2 are real and r1 = r2, the general solution is

(1.25) y = c1e
r1t + c2te

r1t

– If r1 and r2 are complex then let r1 = λ + iµ and r2 =
λ− iµ, the general solution is

(1.26) y = c1e
λt cosµt+ c2e

λt sinµt

for arbitrary constants c1 and c2 which can be determined
with initial conditions.

1.5.3. An example

Check Example 2 from Lecture 4.

1.6. Second order linear homogeneous equation:
Reduction of Order

1.6.1. General Form

(1.27) y′′ + p(t)y′ + q(t)y = 0

where one solution y1(t) is already known.

1.6.2. How to solve it?

• Set

(1.28) y = v(t)y1(t)

Find

(1.29) y′ = v′(t)y1(t) + v(t)y′1(t).

and

(1.30) y′′ = v′′(t)y1(t) + 2v′(t)y′1(t) + v(t)y′′1(t).

• Substitute y, y′ and y′′ back into Eq. (1.27) and collect the
terms to make a differential equation in v

(1.31) y1v
′′ + (2y′1 + py1)v

′ + (y′′1 + py′1 + qy1)v = 0.

• The coefficient of v in Eq. (1.31) is zero since y1 is a solution
of Eq. (1.27), so Eq. (1.31) becomes

(1.32) y1v
′′ + (2y′1 + py1)v

′ = 0.

• Think of v′′ as (v′)′ and Eq. (1.32) then becomes a linear
equation(also a separable equation) in v′. Solve it to find v′

and then v. Substitute v back into Eq. (1.28) to find the other
solution.
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1.6.3. An example

Check Example 2 from Lecture 6.

1.7. nth order Linear homogeneous equations with
constant coefficients

1.7.1. General Form

(1.33) a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0

where a0, a1, . . . , an are real constants.

1.7.2. How to solve it?

• Form the characteristic equation

(1.34) a0r
n + a1r

n−1 + · · ·+ an−1r + an = 0

• Solve Eq. (1.34) to find n roots r1, r2, . . . , rn.
Unequal roots : If r1, r2, . . . , rm are real and r1 6= r2 6= · · · 6= rm, where

m ≤ n, then the solutions that come out these roots are

(1.35) er1t, er2t, . . . , ermt

Complex roots : If a root r1 is complex then there exists another root r2
such that r1 = λ + iµ and r2 = λ − iµ (complex roots
occurs in conjugate pairs), the solutions that come out of
these two roots are

(1.36) eλt cosµt, eλt sinµt

Repeated roots : If a root r1 is real and repeated s times, then the s solu-
tions that comes out of these repeated roots are

(1.37) er1t, ter1t, t2er1t, . . . , ts−1er1t

If a root r1 = λ+iµ is complex and repeated s times, then
its complex conjugate λ+ iµ is also repeated s times. The
2s solutions that come out of these roots are

eλt cosµt, eλt sinµt, teλt cosµt, teλt sinµt,

. . . , ts−1eλt cosµt, ts−1eλt sinµt.

• Once all the solutions y1, y2, . . . , yn have been found corre-
sponding to all the roots of the characteristic equations, the
general solution of Eq. (1.33) is given by

(1.38) y = c1y1(t) + c2y2(t) + · · ·+ cnyn(t)



10 Contents

for arbitrary constants c1, c2, . . . , cn which can be determined
with initial conditions.

1.7.3. An example

Check Example 2 from Lecture 7.

1.8. nth order Linear nonhomogeneous equations
with constant coefficients: Method of

Undetermined Coefficients

1.8.1. General Form

(1.39) a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = g(t)

where a0, a1, . . . , an are constants.

1.8.2. How to solve it?

• Construct the corresponding homogeneous equation

(1.40) a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0

and solve it. Let the solutions of this homogeneous equation
be y1, y2, . . . , yn.
• Make sure that the function g(t) in Eq. (1.39) belongs to one

of the classes of functions in the next table, that is, it involves
nothing more than exponential functions, sines, cosines, poly-
nomials, or sum or products of such functions.
• If g(t) = g1(t) + · · ·+ gn(t), that is, if g(t) is a sum of n terms,

then form n subproblems, each of which contains only one of
the terms g1(t), . . . , gn(t). The ith subproblem consists of the
equation

(1.41) a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = gi(t),

where i runs from 1 to n.
• Depending on gi(t), we assume the particular solution Yi(t)

according to the next table.

gi(t) Yi(t)
Pn(t) = a0t

n + a1t
n−1 + · · ·+ an A0t

n + A1t
n−1 + · · ·+ An

Pn(t)eαt (A0t
n + A1t

n−1 + · · ·+ An)eαt

Pn(t)eαt sin βt or Pn(t)eαt cos βt (A0t
n + A1t

n−1 + · · · +
An)eαt cos βt + (B0t

n + B1t
n−1 +

· · ·+Bn)eαt sin βt
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• If there is any duplication in the assumed form of Yi(t) with
the solutions of the corresponding homogeneous equation, then
multiply Yi(t) by ts, if Yi, tYi, . . . , t

s−1Yi are all solutions of
the corresponding homogeneous equation, so as to remove the
duplication. So for instance if we want to find a particular
solution of

(1.42) y′′ + 4y′ + 4y = 6te−2t,

our choice of Y (t) would have to be At2e−2t since te−2t (which
we find from the above table) is a solution of the corresponding
homogeneous equation of Eq. (1.42).
• Find a particular solution Yi(t) for each subproblems. Then

the sum Y (t) = Y1(t) + · · · + Yn(t) is a particular solution of
the original nonhomogeneous equation (1.39).
• The general solution of Eq. (1.39) is

(1.43) y = c1y1(t) + c2y2(t) + · · ·+ cnyn(t) + Y (t).

for arbitrary constants c1, c2, . . . , cn which can be determined
with initial conditions.

1.8.3. An example

Check Example 1 from Lecture 8 and Example 3 from Lecture 6.

1.9. nth order Linear nonhomogeneous equations:
Method of Variation of Parameters

1.9.1. General Form

(1.44) y(n) + p1(t)y
(n−1) + · · ·+ pn−1(t)y

′ + pn(t)y = g(t)

1.9.2. How to solve it?

• Find a fundamental set of solutions y1, y2, . . . , yn of the corre-
sponding homogeneous equation of (1.44).
• Find the Wronskian W (t) of y1, . . . , yn and find Wm which is

the determinant obtained from W by replacing the mth column
by the column (0, 0, . . . , 0, 1).
• A particular solution of Eq. (1.44) is given by

(1.45) Y (t) =
n∑

m=1

ym(t)

∫ t

t0

g(s)Wm(s)

W (s)
ds,

where t0 is a point on the interval where p1, p2, . . . , pn are all
continuous.



12 Contents

• The general solution of Eq. (1.44) is

(1.46) y = c1y1(t) + c2y2(t) + · · ·+ cnyn(t) + Y (t).

for arbitrary constants c1, c2, . . . , cn which can be determined
with initial conditions.

1.9.3. An example

Check Example 2 from Lecture 8 and Example 4 from Lecture 6.

1.10. Initial value linear problems with constant
coefficients: Laplace transforms

1.10.1. General form

(1.47) a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = g(t)

where a0, a1, . . . , an are constants with initial conditions

(1.48) y(0) = k0, y
′(0) = k1, . . . , y

(n)(0) = kn.

1.10.2. How to solve it?

• Apply Laplace transform L on both sides. Since L is an oper-
ator, therefore the constants can be pulled outside.

(1.49) a0L{y(n)}+ a1L{yn−1}+ · · ·+ an−1L{y′}+ anL{y} = L{g(t)}

• Use the formula

(1.50) L{y(n)} = snL{y} − sn−1y(0)− · · · − sy(n−2)(0)− y(n−1)(0).

to write the left side of Eq. (1.49) in terms of L{y}. Take
any term that doesn’t involve L{y} to the right side of the
equation.
• The equation will look like

(1.51) L{y}G(s) = H(s)

where G and H are functions of s. Dividing both sides by G(s)
we have

(1.52) L{y} =
H(s)

G(s)
= F (s)

• Now

(1.53) y = L−1{F (s)}
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• F (s) can be expressed as a sum of several terms (usually using
partial fractions),

(1.54) F (s) = F1(s) + F2(s) + · · ·+ Fn(s).

each of which are simpler and easier to find the inverse Laplace
transform of using the table in the text book.

(1.55) L−1{F (s)} = L−1{F1(s)}+ L−1{F2(s)}+ · · ·+ L−1{Fn(s)}.

1.10.3. An example

Check Example 4 from Lecture 9 and Lecture 10.

1.11. Second order Linear Equations: Series
Solutions

1.11.1. General Form

(1.56) P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0.

1.11.2. How to solve it?

• We solve Eq. (1.56) in the neighborhood of an ordinary point
x0 (P (x0) 6= 0), and when P,Q and R are polynomials of x.
• Assume that the solution has the form

(1.57) y = a0 + a1(x−x0) + · · ·+ an(x−x0)n + · · · =
∞∑
n=0

an(x−x0)n.

Find
(1.58)

y′ = a1 + 2a2(x−x0) + · · ·+nan(x−x0)n−1 + · · · =
∞∑
n=1

nan(x−x0)n−1.

and
(1.59)

y′′ = 2a2+ · · ·+n(n−1)an(x−x0)n−2+ · · · =
∞∑
n=2

n(n−1)an(x−x0)n−2.

• Substituting them back in Eq. (1.56) we get
(1.60)

P (x)
∞∑
n=2

n(n−1)an(x−x0)n−2+Q(x)
∞∑
n=1

nan(x−x0)n−1+R(x)
∞∑
n=0

an(x−x0)n = 0.
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• By equating the coefficients of xn we can find a recurrence rela-
tion involving the coefficients an. Solve this recurrence relation
to find an.

1.11.3. An example

Check Example 3 from Lecture 12.

1.12. Second order Linear Equations: Euler
Equations

1.12.1. General Form

(1.61) x2y′′ + αxy′ + βy = 0,

where α and β are real constants.

1.12.2. How to solve it?

• Form the characteristic equation

(1.62) r2 + (α− 1)r + β = 0.

• Solve Eq. (1.23) to find the two roots r1 and r2.
– If r1 and r2 are real and r1 6= r2, the general solution is

(1.63) y = c1|x|r1 + c2|x|r2 .
– If r1 and r2 are real and r1 = r2, the general solution is

(1.64) y = c1|x|r1 + c2|x|r1 ln |x|.
– If r1 and r2 are complex then let r1 = λ + iµ and r2 =
λ− iµ, the general solution is

(1.65) y = c1|x|λ cos(µ ln |x|) + c2|x|λ sin(µ ln |x|).
for arbitrary constants c1 and c2 which can be determined
with initial conditions.

1.12.3. An example

Check Example 2 from Lecture 13.


