Chapter 6

Math 2890-001
Spring 2018
Due Mar 28

> Name
\qquad

1. (1 point) Let

$$
u=\left(\begin{array}{c}
1 \\
3 \\
5 \\
0
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{c}
7 \\
3 \\
4 \\
1
\end{array}\right)
$$

Find the inner product $u \cdot v$. Show your work.
2. (1 point) Let

$$
v=\left(\begin{array}{r}
6 \\
-4 \\
-2 \\
5
\end{array}\right) \text {. }
$$

Find a unit vector in the direction of v. Show your work.
3. (1 point) Let

$$
u=\left(\begin{array}{l}
5 \\
4 \\
3 \\
6
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{r}
3 \\
-6 \\
-4 \\
2
\end{array}\right)
$$

Find the distance between u and v. Show and explain your computations.
4. (1 point) Let

$$
u_{1}=\left(\begin{array}{r}
1 \\
-5 \\
5 \\
-1
\end{array}\right), \quad u_{2}=\left(\begin{array}{r}
5 \\
-3 \\
-3 \\
5
\end{array}\right) \quad \text { and } \quad u_{3}=\left(\begin{array}{r}
7 \\
7 \\
5 \\
-3
\end{array}\right)
$$

Is the set $\left\{u_{1}, u_{2}, u_{3}\right\}$ orthogonal? Why or why not? Show your computations.
5. (1 point) Let

$$
y=\left(\begin{array}{l}
2 \\
0 \\
7 \\
1
\end{array}\right)
$$

and let W be the span of

$$
\left(\begin{array}{c}
1 \\
1 \\
0 \\
1
\end{array}\right) \text { and }\left(\begin{array}{c}
1 \\
2 \\
1 \\
3
\end{array}\right)
$$

Project y onto W. Show and explain your computations.
6. (1 point) Let

$$
y=\left(\begin{array}{l}
2 \\
0 \\
7 \\
1
\end{array}\right)
$$

and let W be the span of

$$
\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right) \text { and }\left(\begin{array}{c}
1 \\
2 \\
1 \\
3
\end{array}\right)
$$

Find the point in W that is closest to y. Show and explain your computations.
7. (1 point) Let

$$
y=\left(\begin{array}{l}
2 \\
0 \\
7 \\
1
\end{array}\right)
$$

and let W be the span of

$$
\left(\begin{array}{c}
1 \\
1 \\
0 \\
1
\end{array}\right) \text { and }\left(\begin{array}{c}
1 \\
2 \\
1 \\
3
\end{array}\right)
$$

Write y as a sum of a vector in W and a vector orthogonal to W. Show and explain your computations.
8. (1 point) Let

$$
A=\left(\begin{array}{rr}
1 & 1 \\
2 & 3 \\
1 & 2 \\
1 & 2 \\
-1 & -1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{c}
1 \\
1 \\
1 \\
7 \\
7
\end{array}\right)
$$

Find the least squares solution to $A x=b$. Show and explain your computations.
9. (1 point) Let

$$
A=\left(\begin{array}{rr}
1 & 1 \\
2 & 3 \\
1 & 2 \\
1 & 2 \\
-1 & -1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
7 \\
-2 \\
1 \\
2 \\
2
\end{array}\right)
$$

Find the least squares error in the least squares solution to $A x=b$. Show and explain your computations.

HINT: The least squares solution is $x=\binom{-2}{1}$.
10. (1 point) Let

$$
Q=\left(\begin{array}{rr}
2 / 9 & 4 / 9 \\
-5 / 9 & 6 / 9 \\
-4 / 9 & 2 / 9 \\
6 / 9 & 5 / 9
\end{array}\right), R=\left(\begin{array}{rr}
5 & -11 \\
0 & 3
\end{array}\right) \text { and } b=\left(\begin{array}{r}
11 \\
-1 \\
3 \\
2
\end{array}\right)
$$

Use the QR factorization $A=Q R$ to find the least squares solution to $A x=b$.
Show your work.
11. (1 point) Let

$$
A=\left(\begin{array}{rrr}
0 & -1 & 6 \\
-1 & 4 & -9 \\
-3 & 9 & -12 \\
1 & -3 & 3 \\
1 & -2 & 0
\end{array}\right)
$$

Find the QR factorization of A.
Show and explain your computations.
12. (1 point) Use the QDR factorization

$$
\begin{aligned}
A & =\underbrace{\left(\begin{array}{rrr}
-2 & 0 & 8 \\
-1 & -2 & -6 \\
-2 & -4 & -7 \\
1 & 0 & -4
\end{array}\right)}_{Q} \\
& =\underbrace{\left(\begin{array}{rrr}
-2 & 2 & 0 \\
-1 & -1 & -2 \\
-2 & -2 & 1 \\
1 & -1 & 0
\end{array}\right)}_{D} \underbrace{\left(\begin{array}{rrrr}
1 / 10 & 0 & 0 \\
0 & 1 / 10 & 0 \\
0 & 0 & 1 / 5
\end{array}\right)}_{R} \underbrace{\left(\begin{array}{rrr}
10 & 10 & 0 \\
0 & 10 & 40 \\
0 & 0 & 5
\end{array}\right)}_{R}
\end{aligned}
$$

to find the least squares solution to $A x=b$ where $b=\left(\begin{array}{r}10 \\ -5 \\ 10 \\ -15\end{array}\right)$.
13. (1 point) Let

$$
A=\left(\begin{array}{rrr}
-2 & 4 & -12 \\
3 & -2 & -1 \\
0 & 2 & -7 \\
1 & 0 & -1 \\
-4 & 4 & -10
\end{array}\right)
$$

Find the QDR factorization of A.
Show and explain your computations.
14. (1 point) Consider the data points $(1,-3),(2,-6),(3,9),(4,1)$.

Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the given data points.
Show and explain your computations.
15. (1 point) Consider the data points $(1,-5),(2,-7),(3,-4),(4,5)$.

Find the equation $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$ of the least-squares quadratic that best fits the given data points.
Show and explain your computations.

Total for assignment: 15 points

