Chapter 5

Math 2890-001
Spring 2018
Due Apr 18

Name

\qquad

1. (1 point) Let $A=\left(\begin{array}{rrr}-27 & 54 & -18 \\ -36 & 87 & -30 \\ -72 & 180 & -63\end{array}\right)$ and $\lambda=9$.

Find an eigenvector for the matrix A that corresponds to the given eigenvalue λ.
answer: An eigenvector corresponding to the eigenvalue $\lambda=9$ is a nonzero solution of the equation $(A-(9) I) x=0$, where

$$
A-(9) I=\left(\begin{array}{rrr}
-36 & 54 & -18 \\
-36 & 78 & -30 \\
-72 & 180 & -72
\end{array}\right)
$$

. After row reduction, it can be seen that one choice is $x=\left(\begin{array}{l}1 \\ 2 \\ 4\end{array}\right)$.
2. (1 point) Let $A=\left(\begin{array}{rrr}-7 & -12 & -4 \\ 6 & 11 & 4 \\ -12 & -24 & -9\end{array}\right)$ and $x=\left(\begin{array}{r}1 \\ -1 \\ 2\end{array}\right)$.

Find the eigenvalue for the matrix A that corresponds to the given eigenvector x. Show and explain your work.
answer: The eigenvalue λ can be found from the equation $A x=x \lambda$. After computing $A x=\left(\begin{array}{r}-3 \\ 3 \\ -6\end{array}\right)$, I can see that $\lambda=-3$.
3. (1 point) Let

$$
A=\left(\begin{array}{rrr}
-1 & 6 & 18 \\
0 & -4 & -21 \\
0 & 0 & 3
\end{array}\right)
$$

Find the eigenvalues (including multiplicities) of A. Show and explain your work.
answer: The eigenvalues are the roots of the characteristic polynomial $\operatorname{det}(A-\lambda I)$. Observe that A (and so $A-\lambda I)$ is block triangular. Since the determinant of a triangular matrix is the product of the diagonal entries, the eigenvalues of A are the diagonal entries of $A:-1,-4,3$.
4. (1 point) Let

$$
A=\left(\begin{array}{rrr}
-3 & 0 & 0 \\
6 & -5 & 0 \\
-12 & 4 & -1
\end{array}\right)
$$

Find an invertible matrix P and a diagonal matrix D such that $A P=P D$, or explain why no such matrices exist.
answer: One choice is $P=\left(\begin{array}{rrr}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & -1 & 1\end{array}\right)$ and $D=\left(\begin{array}{rrr}-3 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -1\end{array}\right)$.
5. (1 point) Let

$$
A=\left(\begin{array}{rrrr}
5 & 3 & 6 & -24 \\
0 & 4 & 0 & -18 \\
0 & 0 & 4 & 6 \\
0 & 0 & 0 & -2
\end{array}\right)
$$

Find an invertible matrix P and a diagonal matrix D such that $A P=P D$, or explain why no such matrices exist.

$$
\text { answer: One choice is } P=\left(\begin{array}{rrrr}
1 & -3 & 3 & 3 \\
0 & 1 & -3 & 3 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right) \text { and } D=\left(\begin{array}{rrrr}
5 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & -2
\end{array}\right)
$$

6. (1 point) Let

$$
A=\left(\begin{array}{rrr}
-3 & 5 & -3 \\
0 & -3 & 0 \\
0 & 0 & -4
\end{array}\right)
$$

Find an invertible matrix P and a diagonal matrix D such that $A P=P D$, or explain why no such matrices exist.
answer: No such matrices exits because -3 is an eigenvalue whose algebraic multiplicity (2) is greater than the dimension of its eigenspace (1). To see this row reduce $A-(-3) I$ and observe that only a single column doesn't have a pivot.
7. (1 point) Let

$$
x_{1}=\left(\begin{array}{r}
9 \\
-2 \\
5 \\
-1
\end{array}\right) \quad x_{2}=\left(\begin{array}{r}
-4 \\
-6 \\
1 \\
-5
\end{array}\right) \quad x_{3}=\left(\begin{array}{r}
-6 \\
-1 \\
8 \\
7
\end{array}\right) \quad x_{4}=\left(\begin{array}{r}
-1 \\
8 \\
0 \\
3
\end{array}\right)
$$

and

$$
\lambda_{1}=-5, \quad \lambda_{2}=1, \quad \lambda_{3}=-8, \quad \lambda_{4}=7
$$

Write down a matrix A that has the given vectors as eigenvectors with the corresponding scalars as the eigenvalues.
answer: One solution is $A=P D P^{-1}$ where $P=\left(\begin{array}{rrrr}9 & -4 & -6 & -1 \\ -2 & -6 & -1 & 8 \\ 5 & 1 & 8 & 0 \\ -1 & -5 & 7 & 3\end{array}\right)$ and $D=\left(\begin{array}{rrrr}-5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -8 & 0 \\ 0 & 0 & 0 & 7\end{array}\right)$.
8. (1 point) Consider the matrix

$$
A=\left(\begin{array}{rrrr}
3109 & 727 & -310 & 114 \\
-9546 & -2238 & 946 & -366 \\
8826 & 2053 & -891 & 294 \\
240 & 64 & -16 & 31
\end{array}\right)
$$

Find all the eigenvalues of the matrix A, and for each eigenvalue find a full complement of linearly independent eigenvectors.

HINT: It may help to know that $A P=P D$ where

$$
\begin{gathered}
P=\left(\begin{array}{rrrr}
1 & 7 & -6 & -9 \\
-3 & -22 & 14 & 34 \\
3 & 19 & -25 & -14 \\
0 & 1 & 6 & -10
\end{array}\right) \quad D=\left(\begin{array}{rrrr}
-2 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 7
\end{array}\right) \\
P^{-1}=\left(\begin{array}{rrrr}
-158 & -31 & 22 & 6 \\
-30 & -8 & 2 & -3 \\
-30 & -7 & 3 & -1 \\
-21 & -5 & 2 & -1
\end{array}\right) .
\end{gathered}
$$

answer: The diagonal entries of D are the eigenvalues of A, while the corresponding columns of the invertible matrix P are the (necessarily linearly independent) eigenvectors of A. This means that the eigenvalues are $\lambda_{1}=-2, \lambda_{2}=-1, \lambda_{3}=7, \lambda_{4}=7$, while the corresponding eigenvectors are $x_{1}=\left(\begin{array}{r}1 \\ -3 \\ 3 \\ 0\end{array}\right), x_{2}=\left(\begin{array}{r}7 \\ -22 \\ 19 \\ 1\end{array}\right), x_{3}=\left(\begin{array}{r}-6 \\ 14 \\ -25 \\ 6\end{array}\right), x_{4}=\left(\begin{array}{r}-9 \\ 34 \\ -14 \\ -10\end{array}\right)$.
9. (1 point) Let

$$
A=\left(\begin{array}{rrr}
28 & -6 & -42 \\
-22 & 4 & 34 \\
26 & -6 & -40
\end{array}\right)
$$

Is the origin an attractor, repeller or saddle point for the differential equation $y^{\prime}=A y$? How do you know?

HINT: It may help to know that $A P=P D$ where

$$
P=\left(\begin{array}{rrr}
1 & -1 & -3 \\
-1 & 2 & 1 \\
1 & -1 & -2
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{rrr}
-8 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

answer: The origin is a saddle point since A has both positive and negative eigenvalues.
10. (1 point) Let

$$
A=\left(\begin{array}{rrrr}
-47 & 24 & 9 & -3 \\
69 & -51 & -16 & 5 \\
-393 & 244 & 83 & -29 \\
-81 & 52 & 19 & -13
\end{array}\right)
$$

Is the origin an attractor, repeller or saddle point for the differential equation $y^{\prime}=A y$? How do you know?
hint: It may help to know that $A P=P D$ where

$$
P=\left(\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
2 & 5 & -2 & -1 \\
-2 & -7 & 11 & 4 \\
-3 & -7 & 3 & 4
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{rrrr}
-8 & 0 & 0 & 0 \\
0 & -8 & 0 & 0 \\
0 & 0 & -5 & 0 \\
0 & 0 & 0 & -7
\end{array}\right)
$$

answer: The origin is an attractor since all eigenvalues of A are negative.
11. (1 point) Let

$$
A=\left(\begin{array}{rrr}
122 & -90 & -51 \\
303 & -229 & -133 \\
-258 & 200 & 119
\end{array}\right)
$$

Is the origin an attractor, repeller or saddle point for the differential equation $y^{\prime}=A y$? How do you know?
hint: It may help to know that $A P=P D$ where

$$
P=\left(\begin{array}{rrr}
1 & -3 & -3 \\
3 & -8 & -5 \\
-3 & 7 & 2
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 6
\end{array}\right)
$$

answer: The origin is a repeller since all eigenvalues of A are positive.
12. (1 point) Suppose $A P=P D$ where

$$
P=\left(\begin{array}{rrrr}
1 & -1 & -2 & 0 \\
4 & 3 & -2 & 0 \\
5 & -5 & 5 & -2 \\
-2 & 2 & -5 & -4
\end{array}\right) \quad \text { and } \quad D=\left(\begin{array}{rrrr}
-4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 8 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Solve the initial value problem $y^{\prime}=A y$ where

$$
y(0)=\left(\begin{array}{r}
-4 \\
-32 \\
12 \\
-6
\end{array}\right)
$$

Show your work.

$$
\begin{aligned}
& \text { answer: } y=\left(\begin{array}{r}
1 \\
4 \\
5 \\
-2
\end{array}\right)(-4) e^{-4 t}+\left(\begin{array}{r}
-1 \\
3 \\
-5 \\
2
\end{array}\right)(-4) e^{4 t}+\left(\begin{array}{r}
-2 \\
-2 \\
5 \\
-5
\end{array}\right)(2) e^{8 t}+ \\
& \left(\begin{array}{r}
0 \\
0 \\
-2 \\
-4
\end{array}\right)(-1) e^{t}
\end{aligned}
$$

13. (1 point) Let

$$
A=\left(\begin{array}{rrr}
7 & 24 & 16 \\
-16 & -43 & -26 \\
16 & 39 & 22
\end{array}\right) \quad \text { and } \quad x_{0}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Use the Power Method to find estimates μ_{5} and x_{5} for the dominant eigenvalue of A and its eigenvector. Give your answer either as rational numbers or decimals with at least four digits of accuracy.
answer: $\mu_{5}=-9.0292$ and $x_{5}=\left(\begin{array}{r}-0.5029 \\ 1 \\ -0.9971\end{array}\right)$
details: The vector $x_{k+1}=A x_{k}\left(1 / \mu_{k}\right)$ where μ_{k} is an entry in $A x_{k}$ whose absolute value is as large as possible. I apologize for not including the $y_{k}=A x_{k}$ values.

$$
\begin{aligned}
x_{k} & =\left(\begin{array}{rrrrrr}
1 & -0.5529 & -0.5316 & -0.5147 & -0.5065 & -0.5029 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -0.9059 & -0.9645 & -0.9849 & -0.9934 & -0.9971
\end{array}\right) \\
\mu_{k} & =\left(\begin{array}{lrrrrr}
-85 & -10.6 & -9.4173 & -9.1575 & -9.0666 & -9.0292
\end{array}\right)
\end{aligned}
$$

14. (1 point) Let

$$
A=\left(\begin{array}{rrr}
3.7 & 5.2 & 3.6 \\
-31.2 & 12.1 & -10.4 \\
-21.6 & -10.4 & -14.3
\end{array}\right), x_{0}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \text { and } \alpha=2
$$

Use the Inverse Power Method to find the estimate ν_{3} for the eigenvalue of A closest to α and the estimate x_{3} for the corresponding eigenvector. Give your answer as decimals with at least four digits of accuracy.
answer: $\nu_{3}=1.7000$ and $x_{3}=\left(\begin{array}{r}-0.5 \\ -0.5001 \\ 1\end{array}\right)$.
details: The vector $x_{k+1}=y_{k} / \mu_{k}$ where y_{k} is a solution of $(A-\alpha I) y_{k}=x_{k}$ and μ_{k} is an entry in y_{k} whose absolute value is as large as possible. The eigenvalue estimate $\nu_{k}=\alpha+1 / \mu_{k}$. I apologize for not including the y_{k} values.

$$
\begin{aligned}
x_{k} & =\left(\begin{array}{rrrr}
1 & -0.5035 & -0.5001 & -0.5 \\
1 & -0.5236 & -0.4995 & -0.5001 \\
1 & 1 & 1 & 1
\end{array}\right) \\
\mu_{k} & =\left(\begin{array}{llll}
46.9021 & -3.309 & -3.3413 & -3.3331
\end{array}\right) \\
\nu_{k} & =\left(\begin{array}{llll}
2.0213 & 1.6978 & 1.7007 & 1.7
\end{array}\right)
\end{aligned}
$$

