Chapter 1 Math 2890-001 Spring 2018 Due Feb 05

Name ____

1. (1 point) Write out the augmented matrix corresponding to the linear system.

$4x_1$	+	$5x_2$	_	$3x_3$	_	$3x_4$	+	x_5	+	$7x_6$	=	-2
$-7x_{1}$	+	$2x_2$	+	$9x_3$	+	$8x_4$			+	$3x_6$	=	8
	_	$8x_2$	_	$2x_3$	+	$6x_4$	_	$2x_5$	_	$3x_6$	=	9
x_1	_	$3x_2$			_	$5x_4$	+	$8x_5$	+	$2x_6$	=	0
$3x_1$	+	x_2	_	$3x_3$	+	$5x_4$	+	$2x_5$	+	x_6	=	1

2. (1 point) Write out the linear system corresponding to the augmented matrix.

(1	8	-2	7	9	0	2
	3	-7	8	2	0	2	6
	0	0	0	1	-2	2	3
	-4	2	$^{-1}$	3	8	1	5
	5	9	5	4	1	-9	-4
•							,

$$u = \begin{pmatrix} 3 \\ -3 \\ 4 \end{pmatrix}, v = \begin{pmatrix} 6 \\ -2 \\ 6 \end{pmatrix}, w = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \text{ and } x = \begin{pmatrix} 3 \\ -3 \\ -1 \end{pmatrix}.$$

Do the given vectors span \mathbb{R}^3 ? Show your work. Explain your answer.

answer: The vectors span \mathbb{R}^3 since (after constructing a matrix using the vectors as the columns) every row has a pivot.

$$u = \begin{pmatrix} -2\\ 0\\ 3\\ 2 \end{pmatrix}, v = \begin{pmatrix} -6\\ -2\\ 18\\ 8 \end{pmatrix} \text{ and } w = \begin{pmatrix} 6\\ -8\\ 0\\ 2 \end{pmatrix}.$$

Are the given vectors linearly independent? Show your work. Explain your answer.

answer: Yes, the vectors are linearly independent since (after constructing a matrix using the vectors as the columns) there is a pivot in every column. 5. (2 points) Determine whether the following matrices are

 $\mathsf{RREF} =$ in reduced row echelon form,

 $\mathsf{UREF} =$ in row echelon form, but not in reduced row echelon form, or $\mathsf{NOEF} =$ neither in row echelon form or in reduced row echelon form.

(a)	$\left(\begin{array}{rrrr}1 & 0 & 1 & 1\\0 & 1 & 1 & 1\\0 & 0 & 0 & 0\end{array}\right)$
(b)	$\left(\begin{array}{rrrr} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$
(c)	$\left(\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$
(d)	$\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$

- (b) UREF
- (c) RREF
- (d) NOEF

$$A = \left(\begin{array}{rrrrr} 3 & 6 & 3 & 1 \\ -6 & -12 & -11 & 1 \\ 9 & 18 & 4 & 8 \end{array}\right).$$

Use **Gaussian elimination** to reduce the matrix A to row echelon form. Notice that this problem doesn't involve a linear system, it is just an exercise in *row reduction*.

Show your work.

$$\begin{pmatrix} 3 & 6 & 3 & 1 \\ -6 & -12 & -11 & 1 \\ 9 & 18 & 4 & 8 \end{pmatrix} \sim \begin{pmatrix} 3 & 6 & 3 & 1 \\ 0 & 0 & -5 & 3 \\ 9 & 18 & 4 & 8 \end{pmatrix}$$
$$\sim \begin{pmatrix} 3 & 6 & 3 & 1 \\ 0 & 0 & -5 & 3 \\ 0 & 0 & -5 & 5 \end{pmatrix}$$
$$\sim \begin{pmatrix} 3 & 6 & 3 & 1 \\ 0 & 0 & -5 & 3 \\ 0 & 0 & -5 & 3 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

	1	9	4	$^{-8}$	-2	\
A =		18	12	-24	12).
		-3	4	1	7)	/

Use **Gaussian elimination with partial pivoting** to reduce the matrix *A* to row echelon form. Notice that this problem doesn't involve a linear system, it is just an exercise in *row reduction*.

Show your work.

$$\begin{pmatrix} 9 & 4 & -8 & -2\\ 18 & 12 & -24 & 12\\ -3 & 4 & 1 & 7 \end{pmatrix} \sim \begin{pmatrix} 18 & 12 & -24 & 12\\ 9 & 4 & -8 & -2\\ -3 & 4 & 1 & 7 \end{pmatrix}$$
$$\sim \begin{pmatrix} 18 & 12 & -24 & 12\\ 0 & -2 & 4 & -8\\ -3 & 4 & 1 & 7 \end{pmatrix}$$
$$\sim \begin{pmatrix} 18 & 12 & -24 & 12\\ 0 & -2 & 4 & -8\\ 0 & 6 & -3 & 9 \end{pmatrix}$$
$$\sim \begin{pmatrix} 18 & 12 & -24 & 12\\ 0 & -2 & 4 & -8\\ 0 & 6 & -3 & 9 \end{pmatrix}$$
$$\sim \begin{pmatrix} 18 & 12 & -24 & 12\\ 0 & 6 & -3 & 9\\ 0 & -2 & 4 & -8 \end{pmatrix}$$
$$\sim \begin{pmatrix} 18 & 12 & -24 & 12\\ 0 & 6 & -3 & 9\\ 0 & -2 & 4 & -8 \end{pmatrix}$$
$$\sim \begin{pmatrix} 18 & 12 & -24 & 12\\ 0 & 6 & -3 & 9\\ 0 & 0 & 3 & -5 \end{pmatrix}$$

	(4	3	-14	-7	-2	
A =	3	-2	-2	-1	4	
	1	4	-10	-5	-4	·
	$\sqrt{5}$	2	-14	-7	-3	

Find the reduced row echelon form of A. Notice that this problem doesn't involve a linear system, it is just an exercise in *row reduction*. Also, you are not obliged to use Gaussian elimination for this problem; some semblance of free will is returned.

HINT: With a little creativity in your choice of row operations, all of the entries in all of the matrices you encounter will be integers.

(´ 1	0	-2	-1	0	١
answer: The reduced new scholon form is	0	1	-2	-1	0	
answer. The reduced fow echelon form is	0	0	0	0	1	·
	0	0	0	0	0	/

$$A = \begin{pmatrix} -3 & 3 & -2 \\ -9 & 12 & -3 \\ 6 & -15 & -6 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 3 \\ 3 \\ 15 \end{pmatrix}.$$

Solve the equation Ax = b or explain why it doesn't have a solution. Show your work.

answer:

$$(A \mid b) = \begin{pmatrix} -3 & 3 & -2 \mid 3 \\ -9 & 12 & -3 \mid 3 \\ 6 & -15 & -6 \mid 15 \end{pmatrix}$$
$$\sim \begin{pmatrix} -3 & 3 & -2 \mid 3 \\ 0 & 3 & 3 \mid -6 \\ 0 & 0 & -1 \mid 3 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & 0 \mid 2 \\ 0 & 1 & 0 \mid 1 \\ 0 & 0 & 1 \mid -3 \end{pmatrix}$$
$$r = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

The solution is $x = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$.

$$A = \begin{pmatrix} 2 & 3 & 1 \\ -2 & 1 & 3 \\ 4 & 10 & 6 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix}.$$

Solve the equation Ax = b or explain why it doesn't have a solution. Show your work.

answer: The system is inconsistent because the augmented matrix $(A\,|\,b)$ has a pivot in the last column.

$$A = \begin{pmatrix} -1 & 1 & 3\\ -1 & -1 & -1\\ 1 & -4 & 1\\ 1 & -3 & 2 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 10\\ -8\\ 3\\ 8 \end{pmatrix}.$$

Solve the equation Ax = b or explain why it doesn't have a solution. Show your work.

$$(A \mid b) = \begin{pmatrix} -1 & 1 & 3 \mid 10 \\ -1 & -1 & -1 \mid -8 \\ 1 & -4 & 1 \mid 3 \\ 1 & -3 & 2 \mid 8 \end{pmatrix}$$

$$\sim \begin{pmatrix} -1 & 1 & 3 \mid 10 \\ 0 & -2 & -4 \mid -18 \\ 0 & -3 & 4 \mid 13 \\ 0 & -2 & 5 \mid 18 \end{pmatrix}$$

$$\sim \begin{pmatrix} -1 & 1 & 3 \mid 10 \\ 0 & -2 & -4 \mid -18 \\ 0 & 0 & 10 \mid 40 \\ 0 & 0 & 9 \mid 36 \end{pmatrix}$$

$$\sim \begin{pmatrix} -1 & 1 & 3 \mid 10 \\ 0 & -2 & -4 \mid -18 \\ 0 & 0 & 10 \mid 40 \\ 0 & 0 & 0 \mid 0 \end{pmatrix}$$
 so consistent
$$\sim \begin{pmatrix} 1 & 0 & 0 \mid 3 \\ 0 & 1 & 0 \mid 1 \\ 0 & 0 & 1 \mid 4 \\ 0 & 0 & 0 \mid 0 \end{pmatrix}$$
The solution is $x = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$.

$$A = \begin{pmatrix} 5 & 5 & 20 & 30 & 0 & 1 \\ 2 & -2 & 12 & 8 & 4 & -2 \\ -5 & 4 & -29 & -21 & 4 & 0 \\ -2 & -4 & -6 & -14 & -3 & -2 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} -75 \\ -30 \\ -29 \\ 70 \end{pmatrix}.$$

Find the general solution of the equation Ax = b. Show your work. HINT: The augmented matrix (A | b) has reduced row echelon form

answer: The general solution is

$$x = \begin{pmatrix} -7 \\ -8 \\ 0 \\ 0 \\ -8 \\ 0 \end{pmatrix} + \begin{pmatrix} -5 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} r \begin{pmatrix} -5 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} s$$

where $r, s \in \mathbb{R}$.

$$v = \begin{pmatrix} 5 \\ -4 \\ 8 \\ -1 \\ 0 \end{pmatrix} \quad \text{and} \quad w = \begin{pmatrix} -7 \\ -7 \\ -3 \\ -2 \\ 2 \end{pmatrix}.$$

Compute the sum v + w if it is defined; otherwise, explain why it is not defined.

answer: The sum
$$v + w = \begin{pmatrix} -2 \\ -11 \\ 5 \\ -3 \\ 2 \end{pmatrix}$$
.

14. (1 point) Let

$$v = \begin{pmatrix} -6\\9\\-1\\2\\-4\\-7 \end{pmatrix} \quad \text{and} \quad w = \begin{pmatrix} 2\\2\\-8\\0\\7 \end{pmatrix}.$$

Compute the sum v + w if it is defined; otherwise, explain why it is not defined.

answer: The sum v + w is not defined because v and w have different dimensions.

$$\alpha = -7, \quad \beta = 5, \quad v = \begin{pmatrix} 2\\ 9\\ -1\\ 7 \end{pmatrix} \quad \text{and} \quad w = \begin{pmatrix} -1\\ 7\\ 6\\ -1 \end{pmatrix}.$$

Compute the linear combination $v\alpha+w\beta,$ or explain why it is impossible. Show your work.

answer: The linear combination
$$v\alpha + w\beta = \begin{pmatrix} -19\\ -28\\ 37\\ -54 \end{pmatrix}$$
.

16 points total