Chapter 3 Math 2890-003 Spring 2016 Due Mar 24

Name _____

1. (1 point) Let

	(-8	0	0	0	0	0)	
A =		-9	6	0	0	0	0	
		7	-2	1	0	0	0	
		-5	-2	5	-4	0	0	ŀ
		0	2	2	-1	1	0	
		9	9	2	8	-1	2 /	

Find the determinant of A if it exists. Show and explain your computations. If the determinant doesn't exist, explain why it doesn't.

answer: The determinant of a triangular matrix is the product of the diagonal entries of the matrix, so det(A) = (-8)(6)(1)(-4)(1)(2) = 384.

$$A = \left(\begin{array}{ccccccccccccccc} 3 & 5 & 6 & 4 & 0 & 1 & 0 & 4 \\ 1 & 1 & 7 & 2 & 0 & 6 & 5 & 0 \\ 0 & 0 & 9 & 2 & 4 & 1 & 2 & 3 \\ 0 & 0 & 3 & 7 & 4 & 6 & 7 & 2 \\ 0 & 0 & 0 & 0 & 0 & 8 & 9 & 4 \\ 0 & 0 & 0 & 0 & 5 & 9 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 9 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 8 \end{array}\right)$$

Find the determinant of A if it exists. Show and explain your computations. If the determinant doesn't exist, explain why it doesn't.

answer: The determinant of a block triangular matrix is the product of the determinants of the diagonal blocks, so

$$det(A) = det\begin{pmatrix} 3 & 5\\ 1 & 1 \end{pmatrix} \cdot det\begin{pmatrix} 9 & 2\\ 3 & 7 \end{pmatrix} \cdot det\begin{pmatrix} 0 & 8\\ 5 & 9 \end{pmatrix} \cdot det\begin{pmatrix} 9 & 7\\ 3 & 8 \end{pmatrix}$$
$$= ((3)(1) - (5)(1)) \cdot ((9)(7) - (2)(3)) \cdot ((0)(9) - (8)(5)) \cdot ((9)(8) - (7)(3))$$
$$= (-2)(57)(-40)(51)$$
$$= 232560$$

$$A = \left(\begin{array}{rrrrr} 2 & 8 & 1 & 0 \\ 1 & 8 & 3 & 3 \\ 3 & 6 & 1 & 1 \end{array}\right).$$

Find the determinant of A if it exists. Show and explain your computations. If the determinant doesn't exist, explain why it doesn't.

answer: Only square matrices have determinants. The matrix A isn't square so it doesn't have a determinant.

	$\begin{pmatrix} -4\\ 4 \end{pmatrix}$	$0 \\ -1$	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 4 \\ 0 \end{pmatrix}$	$^{-5}_{-2}$	$-2 \\ -3$	$1 \\ -5$	$\begin{pmatrix} 2\\ 2 \end{pmatrix}$	۱
A =	-4	4	$\frac{1}{2}$	0	0	0	$\frac{2}{0}$	-1	5	1	.
	-3	5	-3	-1	0	0	0	0	5	-4	
	$\sqrt{-3}$	-1	0	-5	-3 /	$\int 0$	0	0	0	3 /	

Find the determinant of A if it exists. Show and explain your computations. If the determinant doesn't exist, explain why it doesn't.

answer: The matrix A is a product of two matrices L and U (say), so det(A) = det(L) det(U). But each factor is triangular and so has determinant equal to the product of its diagonal entries. So

$$\det A = ((-4)(-1)(2)(-1)(-3)) \cdot ((4)(-2)(-1)(5)(3))$$

= (24) \cdot (120)
= 2880.

$$A = \begin{pmatrix} 5 & 5 & 3 & 9 \\ 1 & 8 & 0 & 2 \\ 3 & 6 & 3 & 5 \\ 1 & 9 & 0 & 3 \end{pmatrix}.$$

Find the determinant of A if it exists. Show and explain your computations. If the determinant doesn't exist, explain why it doesn't.

answer: The matrix has determinant 51.

Total for assignment: 5 points