Matrix Factorizations

We've reached the end of the course. We now have six factorizations. Three are related to linear systems while three are related to eigensystems.

Linear Systems: Ax = b

Given matrix $A_{m \times n}$ and vector b find the vector x that makes Ax as close to b as possible.

- A is invertible (most square matrices, i.e., m = n).
 - A = LDU

L, U triangular, D diagonal (all $m \times m = n \times n$)

• A has linearly independent columns (most matrices with $m \ge n$).

A = QDR

 $R_{n \times n}$ triangular, $D_{n \times n}$ diagonal, $Q_{m \times n}$ with $Q^T Q D = I_{n \times n}$

• A is any matrix.

 $A = U\Sigma V^*$

 $U_{m \times m}, V_{n \times n}$ unitary, $\Sigma_{m \times n}$ diagonal with non-negative entries

Eigen Systems: $Ax = x\lambda$

Given square matrix $A_{m \times m}$ find scalars λ and vectors $x \neq 0$ that satisfy equation.

• A is normal $(AA^* = A^*A)$.

 $A = UD\,U^*$

 \boldsymbol{U} unitary, \boldsymbol{D} diagonal

• A is diagonalizable (most square matrices).

 $A = PDP^{-1}$

P invertible, D diagonal

• A is any square matrix.

 $A=UTU^*$

 \boldsymbol{U} unitary, \boldsymbol{T} triangular

What you are responsible for:

- Knowing how to find each of these six factorizations when you are given a matrix.
- For the three factorizations related to linear systems, knowing how to use the factorization to find the solution (or least-squares solution) to a linear system.
- For the three factorizations related to eigensystems, knowing how to use the factorization to find the eigenvalues and eigenvectors of the matrix.