Chapter 1

e conventions

— n is a positive integer

N = 2™ the number of binary strings of length n.
(The number of n-bit binary strings).

— When convenient we think of an n-bit binary string as a positive integer
via its base 2 representation.

The k" component of a vector a will be denoted by either a or a(k).
This is the coefficient of e; in the representation of a with respect to
the standard basis: a = Z,Ij:_ol aer.

e state of our (quantum) system is a vector in RY (or CV) of length 1 (a unit

vector).
— Some examples in R%: (/5 4/5 2/5 1/5)T (4o 6/0 —2/9 5/9)T

. : . . T
— An example in C*: (1-ifa 1+2i/s 2-i/y —2i/4)

— Another way to think of the computation of length:
T

|a|?>=a*a=2a'a
transformations of our state will be multiplication by matrices that pre-
serve length. These matrices are called unitary.

11
0 1
example this doesn’t preserve length so M is not unitary.

— An example of multiplication by a matrix M = (> Observe by

— A way to see if U is unitary without checking ||Ua|| = ||a|| for all a.
Claim: A matrix U is unitary iff U* = U~
% Recall(?) that, for matrices, (UV)T = VTUT and, for complex
numbers, Wz = wz and w + z = W + Z.
x Conclude that, for matrices, (UV)* = V*U*.
* Compute |[Ual|?=--- = ||a].

We’ve shown that matrices satisfying U* = U~! are unitary. The other
implication can be established with a little fiddling. We'll skip it.

start:

move:

end:

with state vector equal to the basis vector eg.
repeatedly multiply state vector by unitary matrices.

Strangely, the input is encoded by the choice of unitary matrices.

measure final state a getting n-bit binary string k with probability | a(k) |2.

This is where the output is. Note that there is a nonzero probability that
we’ll get a k that is incorrect. In this case we run the whole thing again. The
idea is to choose moves that stack the deck in favor of getting the correct
answer. Shor’s factorization algorithm is a good example of how this works.

Chapter 2
Asymptotic Notation

We restrict our attention to functions f : N — N. In particular, we don’t have to
worry about dividing by 0. Just for fun let

fn) =12 +2% 4+ ... 4 n?
= (Y3)n® + (Y2)n* + (Yo)n

Can prove this by induction.

Limits

s(n) ~ t(n) if lim, o sW/t(n) = 1

s(n)

o(t(n))

We say s(n) and ¢(n) are asymptotically equivalent.
Bx. [(n) ~ (1/s)n®

if lim,, 00 5(W)/t(n) = 0

We say s(n) is little-oh-of ¢(n).

Ex. f(n) = o(n*)

Bounds

O(t(n))

if there is a positive constant ¢ so that s(n) < c¢-t(n) for all n.
We say s(n) is Big-Oh-of ¢(n).

Note that this means that $(n)/i(n) is bounded away from co.
Ex. f(n) =O0(n*)

Ex. f(n) = 0(n?)

Ex. f(n) = (1/3)n® + O(n?) This needs interpretation.

if there is a positive constant ¢ so that s(n) > ¢-t(n) for all n.

We say s(n) is Big-Omega-of ¢(n). This is the same as t(n) = O(s(n)).
Note that this means that $(n)/¢(n) is bounded away from 0.

Ex. f(n) =Q(1)

Ex. f(n) = Q(n?)

if s(n) = O(t(n)) and s(n) = Q(t(n)).
We say s(n) is Big-Theta-of ¢(n).

Note that this means that s(7)/t(n) is bounded away from both 0 and co. This
is not as strong as “lim,,_, o 5(")/t(n) exists and is some postive number.”

Ex. f(n) = 0(n?)

Simple operations

Use the interpretation of Big-Oh in terms of sets of functions to explain (some of)
the following.

s(n) = O(s(n))
¢-0O(s(n)) = 0(s(n)) if ¢ is a positive constant
O(s(n)) + O(s(n)) = O(s(n))
O(0(s(n))) = O(s(n))
O(s(n))O(t(n)) = O(s(n)t(n))
O(s(n)t(n)) = s(n)O(t(n))

History
e O-notation is from P. Bachmann in 1894 (Analytische Zahlentheorie).

e o-notation is from E. Landau in 1909 (distribution of prime numbers).

e O and © notations are from Knuth (The Art of Computer Programming).

Chapter 3
Summary

e We start with an n-bit string as input.
e Our state is a unit vector in an N = 2™ dimensional Hilbert space.
e Our transformations are N x N wunitary matrices.

o We want an feasible algorithm. By this we mean that its running time should
be O(n*) for some positive constant k. This is written, slightly inconsistently
but conveniently, in the text as n©W). (This is also called polynomial time.)

e To multiply a general N x N unitary matrix times a general vector in N-
dimensional space takes time O(N?) = O(2?") # n°("). So we have to be
careful about which unitary matrices we use in our algorithms. That’s the
next item on the agenda:

e Find unitary matrices that are useful but lead to a feasible algorithm.

3.1 Hilbert Spaces
Recall Some Notation:

(1) Ulr,] is the entry in row r and column ¢ of U.

(2) V is the transpose of U (written V = UT) if V[r,c] = Ule,7].

(3) V is the adjoint of U (written V = U*) if Vr,c] = Ule,r]. Other names for
the adjoint are Hamziltonian conjugate and conjugate transpose.

(4) Hardly worth mentioning, but if U is real then UT = U*.

(5) A (square) matrix U is unitary provided U*U = I.

Inner Product

An N-dimensional vector space over R (or C) is a Hilbert space if it has an inner
product. Our vector spaces are column spaces and our inner product will always
be the following standard one.

Definition: (a,b) =5, a(k)b(k) = a*b
), {(a,b+c)=(a,b)+(a,c), (a fb)=p(ab)

)

(2) Properties: (b,a) = (a,b

(3) Relation to length: (a,a) =", a(k)a(k) =>",|a(k)|* = al?

(4) We say that two vectors are orthogonal (perpendicular) if (a, b) = 0.

(5) Multiplication by unitary matrices preserves the inner product:

(Ua,Ub) =---=(a,b).

(6) For arbitrary matrices A and B, (A*B)[r,c] = (A[:,r], A[:,¢]), i.e., the entry
in row r and column ¢ of A*B is the inner product of column r of A and
column ¢ of B. Hence, unitary matrices have orthonormal columns.

@ “We will use Hy to denote this space of dimension N.” No they don’t,
at least not consistently (see first sentence of Section 3.2 for example).

