Math 4350

Homework 2

- (3.2) If U is a matrix, then what is $U\mathbf{e}_k$? answer: The k^{th} column of U.
- (3.4) Consider the matrix

$$U = \begin{bmatrix} w & w \\ w & -w \end{bmatrix}.$$

For what real values of w is it a unitary matrix?

solution: Since w is real the adjoint $U^* = U^T$ and clearly $U^T = U$. So this particular U is unitary iff UU = I. Let's take a look.

$$UU = \begin{bmatrix} w & w \\ w & -w \end{bmatrix} \begin{bmatrix} w & w \\ w & -w \end{bmatrix}$$
$$= \begin{bmatrix} 2w^2 & w^2 - w^2 \\ w^2 - w^2 & 2w^2 \end{bmatrix}$$
$$= \begin{bmatrix} 2w^2 & 0 \\ 0 & 2w^2 \end{bmatrix}$$

This is the identity iff $2w^2 = 1$. In othe words

$$w = \pm \frac{1}{\sqrt{2}}$$

(3.7) For any complex $N \times N$ matrix U, we can uniquely write U = R + iQ, where Q and R have real entries. Show that if U is unitary, then is the $2N \times 2N$ matrix V given in block form by

$$V = \begin{bmatrix} R & Q \\ -Q & R \end{bmatrix}.$$

Thus, by doubling the dimension, we can remove the need for complexnumber entries.

solution: Since R and Q have real entries we know $\overline{R}=R$ and $\overline{Q}=Q.$ Consequently the adjoint

$$U^* = \overline{U}^T$$

$$= \overline{R + iQ}^T$$

$$= (R - iQ)^T$$

$$= R^T - iQ^T$$

Now U a $N \times N$ unitary matrix implies that

$$I_{N} = U^{*}U$$

$$= (R^{T} - iQ^{T})(R + iQ)$$

$$= R^{T}R + iR^{T}Q - iQ^{T}R - i^{2}Q^{T}Q$$

$$= (R^{T}R + Q^{T}Q) + i(R^{T}Q - Q^{T}R)$$

We see that

$$R^T R + Q^T Q = I_N$$
$$R^T Q - Q^T R = 0_N$$

Now we compute V^*V making use of the fact that V is real so $V^* = V^T$.

$$V^*V = V^T V$$

$$= \begin{bmatrix} R & Q \\ -Q & R \end{bmatrix}^T \begin{bmatrix} R & Q \\ -Q & R \end{bmatrix}$$

$$= \begin{bmatrix} R^T & -Q^T \\ Q^T & R^T \end{bmatrix} \begin{bmatrix} R & Q \\ -Q & R \end{bmatrix}$$

$$= \begin{bmatrix} R^T R + Q^T Q & R^T Q - Q^T R \\ Q^T R - R^T Q & Q^T Q + R^T R \end{bmatrix}$$

$$= \begin{bmatrix} I_N & 0_N \\ 0_N & I_N \end{bmatrix}$$

$$= I_{2N}$$

and V is unitary.

(3.8) Apply the construction of the last problem to the matrix

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

This is the second of the so-called *Pauli matrices*. solution: We have

$$Y = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + i \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$= R + iQ$$

and so

$$Y' = \begin{bmatrix} R & Q \\ -Q & R \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

(3.9) Consider the following matrix

$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} e^{i\pi/4} & e^{-i\pi/4} \\ e^{-i\pi/4} & e^{i\pi/4} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix}$$

What is V^2 ?

solution: We simply compute.

$$\begin{split} V^2 &= \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1+i & 1-i \\ 1-i & 1+i \end{bmatrix} \\ &= \frac{1}{4} \begin{bmatrix} (1+i)^2 + (1-i)^2 & (1+i)(1-i) + (1-i)(1+i) \\ (1-i)(1+i) + (1+i)(1-i) & (1-i)^2 + (1+i)^2 \end{bmatrix} \\ &= \frac{1}{4} \begin{bmatrix} 2i-2i & 2+2 \\ 2+2 & -2i+2i \end{bmatrix} \\ &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{split}$$

Or if you prefer to use the first representation of the matrix:

$$\begin{split} V^2 &= \frac{1}{\sqrt{2}} \begin{bmatrix} e^{i\pi/4} & e^{-i\pi/4} \\ e^{-i\pi/4} & e^{i\pi/4} \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} e^{i\pi/4} & e^{-i\pi/4} \\ e^{-i\pi/4} & e^{i\pi/4} \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} e^{i\pi/4} e^{i\pi/4} + e^{-i\pi/4} e^{-i\pi/4} & e^{i\pi/4} e^{-i\pi/4} + e^{-i\pi/4} e^{i\pi/4} \\ e^{-i\pi/4} e^{i\pi/4} + e^{i\pi/4} e^{-i\pi/4} & e^{-i\pi/4} e^{-i\pi/4} + e^{i\pi/4} e^{i\pi/4} \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} e^{i\pi/2} + e^{-i\pi/2} & e^0 + e^0 \\ e^0 + e^0 & e^{-i\pi/2} + e^{i\pi/2} \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} i - i & 1 + 1 \\ 1 + 1 & -i + i \end{bmatrix} \\ &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{split}$$