
Math 4350

Homework 1

(2.1) Let x be a Boolean string. What type of number does the Boolean string
x0 represent?

solution: Since x0 has 0 in the ones position, x0 is an even number.

(2.2) Let x be a Boolean string with exactly one bit a 1. What can you say
about the number it represents? Does this identification depend on using
the canonical numbering of {0, 1}n, where n is the length of x?

solution: We have x = 0 · · · 010 · · · 0 where the length of x is n. If the
1 is in the position m spots from the right we have the number that x
represents as

0 · 2n + · · ·+ 0 · 2m+1 + 1 · 2m + 0 · 2m−1 + · · ·+ 0 · 21 + 0 · 20 = 2m

a power of 2. This doesn’t depend on the canonical numbering.

(2.4) Let x be a Boolean string of even length. Can the Boolean string xxx
ever represent a prime number in binary notation? First find an x of odd
length with xxx prime. Then either find an x of even length with xxx
prime or prove that no such x exists.

solution: If y is a binary string let y represent the corresponding number.
If x has length n then a little reflection shows that

xxx = (22n + 2n + 1)x

and xxx can only be a prime if x = 1.

A few examples x of odd length with xxx a prime:

x xxx

1 7

001 73

000000001 262657

Now suppose that x = 0 · · · 01 is of even length n = 2m. Then

xxx = (22n + 2n + 1)x

= 4n + 22m + 1

= 4n + 4m + 1

≡ 1n + 1m + 1 (mod 3)

≡ 0 mod 3

Consequently xxx is divisible by 3 and, since it is clearly larger than 3, it
is not a prime.

1



(2.6) Show that a function f : N→ N is bounded by a polynomial in n, written
f(n) = nO(1), if and only if there is a constant C such that for all suffi-
ciently large n, f(2n) ≤ Cf(n). How does C relate to the exponent k of
the polynomial? Thus, we can characterize algorithms that run in poly-
nomial time as those for which the amount of work scales up only linearly
as the size of the data grows linearly. Later we will use this criterion as a
benchmark for feasible computation.

You may assume that f is an increasing function of n if that is of any use
to you.

Oops. Neither direction of this problem is true without some modification.
Sorry about that. The important part of the problem (the part we’ll be
using later in the course) is:

If f : N→ N is a monotonically increasing function and there is a constant
C such that f(2n) ≤ Cf(n) for all sufficiently large n, then f(n) = O(nk)
for some constant k.

solution:

(⇐) Suppose f : N→ N is a monotonically increasing function and there
is a constant C such that f(2n) ≤ Cf(n) for all n ≥ N = 2M (some M).
We’ll show that f(n) = O(nk) for some k.

Let m = dlog2(n)e, so that n ≤ 2m < 2n. Also let k = dlog2(C)e. We’ll
show that f(n) ≤ Bnk for all n ≥ N where B = 2kf(2M )/CM . Consider

f(n) ≤ f(2m) since f is increasing

≤ f(2m−1)C1 by hypothesis

... repeating

≤ f(2M )Cm−M

=
f(2M )

CM
Cm

=
f(2M )

CM
2log2(C)m

=
f(2M )

CM
(2m)log2(C)

<
f(2M )

CM
(2n)k

=
2kf(2M )

CM
· nk

= B · nk

This result doesn’t hold without the monotonicity assumption (Example
1), and the reverse implication doesn’t hold at all (Example 2).

2



(⇒) Suppose f(n) = Θ(nk) for some k. We’ll show that there is a constant
C such that f(2n) ≤ Cf(n) for n ≥ N (some N).

Since f(n) = Θ(nk) for some k, there are positive constants R and S with
Rnk ≤ f(n) ≤ Snk for n ≥ N (some N). We’ll show that f(2n) ≤ Cf(n)
for n ≥ N where C = 2kS/R.

f(2n) ≤ S(2n)k 2n > n ≥ N
= 2kS · nk

≤ 2kS · f(n)

R
n ≥ N

≤ 2kS

R
· f(n)

≤ C · f(n)

This result doesn’t hold if we weaken the hypothesis to f(n) = O(nk)
for some k (Example 2), and the reverse implication doesn’t hold at all
(Example 3).

3



Example 1. We exhibit a function f : N → N that satisfies f(2n) ≤ f(n) but
is not bounded by a polynomial in n.

f(n) =

{
1 if n is even

2n if n is odd

Clearly, because of its values for odd n, f(n) is not bounded by any polynomial
in n, but f(2n) = 1 ≤ f(n) for any n.

Example 2. We exhibit a monotonically increasing function f : N→ N that is
O(n), but there is no constant C such that f(2n) ≤ Cf(n) for large n.

f(n) = mk if mk ≤ n < mk+1

where the mk are defined recursively:

m0 = 1

m1 = 2

mk+1 = m2
k for k ≥ 1

In particular, the mk are powers of 2. Note that f(n) ≤ n for all n with equality
iff n = 1 or n = mk for some k.

Now consider n = mk+1/2 ∈ N since mk+1 is even. Then

f(n) = f(mk+1/2) = mk since mk ≤ mk+1/2 < mk+1

f(2n) = f(mk+1) = mk+1

f(2n)/f(n) = mk+1/mk

= m2
k/mk

= mk

Since mk → ∞ as k → ∞ there is no constant C that satifies f(2n) ≤ Cf(n)
for all large n.

Example 3. We exhibit a monotonically increasing function f : N → N such
that f(2n) ≤ 3f(n) for all n but f(n) 6= Θ(nk) for any k.

f(n) =

{
1 if n ≤ 4

bn1−
1

log2 log2 n c otherwise

Since 1 − 1
log2 log2 n

< 1 we clearly have f(n) = O(n). On the other hand

f(n) 6= Ω(n) since

n/f(n) ≥ n
1

log2 log2 n →∞ as n→∞

Clearly, for any k > 1, f(n) = O(nk) and f(n) 6= Ω(nk). Also, for any ε > 0,
similar limits show that f(n) = Ω(n1−ε) but f(n) 6= O(n1−ε). So f(n) is not
Θ(nk) for any k.

The fact that f(2n) ≤ 3f(n) is left as an exercise for the reader.

4


