Math 3200

Homework 3

(2.2) Compute the following gcd's using Algorithm 1.1.13.

gcd(15,35) gcd(247,299) gcd(51,897) gcd(136,304)

Show all of your work. Feel free to use python to do (and display) the computations, but in this case also turn in a printout of your code.

solution: I used a python program to do this problem. First the code.

```
# Algorithm 1.1.13
def gcd(a,b):
    a,b = abs(a),abs(b)
    while b != 0:
        # a = q(b)+(r)
        q,r = divmod(a,b)
        print('{} = {}({})+({})'.format(a,q,b,r))
        a,b = b,r
    return a
```

Next the results from running gcd on the four cases.

<pre>In [2]: gcd(15,35) 15 = 0(35)+(15) 35 = 2(15)+(5) 15 = 3(5)+(0) Out[2]: 5</pre>	<pre>In [3]: gcd(247,299) 247 = 0(299)+(247) 299 = 1(247)+(52) 247 = 4(52)+(39) 52 = 1(39)+(13) 39 = 3(13)+(0) Out[3]: 13</pre>
<pre>In [4]: gcd(51,897) 51 = 0(897)+(51) 897 = 17(51)+(30) 51 = 1(30)+(21) 30 = 1(21)+(9) 21 = 2(9)+(3) 9 = 3(3)+(0) Out[4]: 3</pre>	<pre>In [5]: gcd(136,304) 136 = 0(304)+(136) 304 = 2(136)+(32) 136 = 4(32)+(8) 32 = 4(8)+(0) Out[5]: 8</pre>

(2.7) Find four complete sets of residues modulo 7, where the *i*th set satisfies the *i*th condition: (1) nonnegative, (2) odd, (3) even, (4) prime.

solution: There are an infinite number of solutions for each condition. Here's a selection:

(1) nonnegative	$\{0, 1, 2, 3, 4, 5, 6\}$
(2) odd	$\{7,1,9,3,11,5,13\}$
(3) even	$\{0,8,2,10,4,12,6\}$
(4) prime	$\{7,29,2,3,11,5,13\}$

(2.8) Find rules in the spirit of Proposition 2.1.9 for divisibility of an integer by 5, 9, and 11, and prove each of these rules using arithmetic modulo a suitable n.

solution: For all of these we will consider $10^k \pmod{n}$ for k = 0, 1, 2, ...This will allow us to easily reduce any integer m modulo n by considering its decimal representation $m = \sum_{k>0} d_k 10^k$.

- (5) Since $10 \equiv 0 \pmod{5}$, we have $10^k \equiv 0 \pmod{5}$ for all k > 0 so $m \equiv d_0 \pmod{5}$ and m is divisible by 5 if and only if the "ones" digit d_0 is so divisible: $d_0 = 5$ or 10.
- (9) Since $10 \equiv 1 \pmod{9}$, we have $10^k \equiv 1 \pmod{9}$ for all $k \ge 0$ so $m \equiv \sum_{k\ge 0} d_k \pmod{9}$ and m is divisible by 9 if and only if the sum of the digits $\sum_{k\ge 0} d_k$ is so divisible.
- (11) Since $10 \equiv -1 \pmod{11}$, we have $10^k \equiv -1 \pmod{11}$ for odd $k \geq 0$ and $10^k \equiv 1 \pmod{11}$ for even $k \geq 0$. Consequently $m \equiv \sum_{k\geq 0} (-1)^k d_k \pmod{11}$ and m is divisible by 11 if and only if the alternating sum of the digits $\sum_{k\geq 0} (-1)^k d_k$ is so divisible.
- (2.24) Prove that for any postive integer n the fraction (12n+1)/(30n+2) is in reduced form.

solution: All that has to be shown is that for any positive integer $n \operatorname{gcd}(12n+1, 30n+2) = 1$. We'll do this in an ad hoc fashion.

gcd(12n + 1, 30n + 2) = gcd(12n + 1, 15n + 1)= gcd(12n + 1, 3n) = gcd(1, 3n) = 1

- (2.9) (Optional Challenge problem) (The following problem is from the 1998 Putnam Competition.) Define a sequence of decimal integers a_n as follows: $a_1 = 0$, $a_2 = 1$, and a_{n+2} is obtained by writing the digits of a_{n+1} immediately followed by those of a_n . For example $a_3 = 10$, $a_4 = 101$, and $a_5 = 10110$. Determine the n such that a_n is a multiple of 11, as follows:
 - (a) Find the smallest integer n > 1 such that a_n is divisible by 11.
 - (b) Prove that a_n is divisible by 11 if and only if $n \equiv 1 \pmod{6}$.

solution: Let d_{nk} be the k^{th} digit of a_n . Let b_n be the parity of the bit length of a_n and let c_n be the alternating sum $\sum_k (-1)^k d_{nk}$. We'll use the characterization of divisibility by 11 from Exercise 2.8, namely a_n is divisible by 11 if and only if c_n is so divisible.

The term a_{n+2} is constructed from a_n and a version of a_{n+1} that has been shifted by b_n , the bit length of a_n . After some reflection we see that we have have the following two recursive relations:

$$b_{n+2} = b_{n+1} + b_n \pmod{2}$$

 $c_{n+2} = (-1)^{b_n} c_{n+1} + c_n \pmod{11}$

that hold for $n \ge 1$. Coupling this with the given information: $a_1 = 0$ and $a_2 = 1$ we can construct the table:

n	a_n	b_n	c_n
1	0	1	0
2	1	1	1
3	10	0	-1
4	101	1	2
5	10110	1	1
6	10110101	0	1
7	1011010110110	1	0
8	101101011011010110101	1	1

Since the next row is determined by the previous two and the b_n and c_n columns in rows 7 and 8 are the same as those columns in rows 1 and 2, from this point on these columns will repeat themselves and we have:

$$c_n = \begin{cases} 0 & n \equiv 1 \pmod{6} \\ 1 & n \equiv 2 \pmod{6} \\ -1 & n \equiv 3 \pmod{6} \\ 2 & n \equiv 4 \pmod{6} \\ 1 & n \equiv 5 \pmod{6} \\ 1 & n \equiv 0 \pmod{6} \end{cases}$$

We see that c_n (and so a_n) is divisible by 11 iff $n \equiv 1 \pmod{6}$ and the smallest such n > 1 is 7.