Chapter 6

Math 2890-001
Fall 2017
Due Nov 06
Name \qquad

1. (1 point) Let

$$
u=\left(\begin{array}{c}
1 \\
3 \\
5 \\
0
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{c}
7 \\
3 \\
4 \\
1
\end{array}\right)
$$

Find the inner product $u \cdot v$. Show your work.
answer: $u \cdot v=\sum_{k} u_{k} v_{k}=(1)(7)+(3)(3)+(5)(4)+(0)(1)=36$.
2. (1 point) Let

$$
v=\left(\begin{array}{r}
6 \\
-4 \\
-2 \\
5
\end{array}\right)
$$

Find a unit vector in the direction of v. Show your work.
answer: Since $\|v\|^{2}=v \cdot v=(6)^{2}+(-4)^{2}+(-2)^{2}+(5)^{2}=81$, the unit vector

$$
u= \pm \frac{v}{\|v\|}= \pm\left(\begin{array}{r}
6 \\
-4 \\
-2 \\
5
\end{array}\right) \frac{1}{9}= \pm\left(\begin{array}{r}
0.6667 \\
-0.4444 \\
-0.2222 \\
0.5556
\end{array}\right)
$$

3. (1 point) Let

$$
u=\left(\begin{array}{l}
5 \\
4 \\
3 \\
6
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{r}
3 \\
-6 \\
-4 \\
2
\end{array}\right)
$$

Find the distance between u and v. Show and explain your computations.
answer: The distance is $\|u-v\|=\sqrt{169}=13$, where $u-v=\left(\begin{array}{r}2 \\ 10 \\ 7 \\ 4\end{array}\right)$.
4. (1 point) Let

$$
u_{1}=\left(\begin{array}{r}
1 \\
-5 \\
5 \\
-1
\end{array}\right), \quad u_{2}=\left(\begin{array}{r}
5 \\
-3 \\
-3 \\
5
\end{array}\right) \quad \text { and } \quad u_{3}=\left(\begin{array}{r}
7 \\
7 \\
5 \\
-3
\end{array}\right)
$$

Is the set $\left\{u_{1}, u_{2}, u_{3}\right\}$ orthogonal? Why or why not? Show your computations.
answer: No, $u_{2} \cdot u_{3}=-16 \neq 0$.
5. (1 point) Let

$$
y=\left(\begin{array}{l}
2 \\
0 \\
7 \\
1
\end{array}\right)
$$

and let W be the span of

$$
\left(\begin{array}{c}
1 \\
1 \\
0 \\
1
\end{array}\right) \text { and }\left(\begin{array}{c}
1 \\
2 \\
1 \\
3
\end{array}\right)
$$

Project y onto W. Show and explain your computations.
answer: The projection is

$$
\begin{aligned}
w & =A\left(A^{T} A\right)^{-1}\left(A^{T} y\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
0 & 1 \\
1 & 3
\end{array}\right)\left(\begin{array}{rr}
3 & 6 \\
6 & 15
\end{array}\right)^{-1}\binom{3}{12} \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
0 & 1 \\
1 & 3
\end{array}\right)\binom{-3}{2} \\
& =\left(\begin{array}{r}
-1 \\
1 \\
2 \\
-3
\end{array}\right)
\end{aligned}
$$

6. (1 point) Let

$$
y=\left(\begin{array}{l}
2 \\
0 \\
7 \\
1
\end{array}\right)
$$

and let W be the span of

$$
\left(\begin{array}{c}
1 \\
1 \\
0 \\
1
\end{array}\right) \text { and }\left(\begin{array}{c}
1 \\
2 \\
1 \\
3
\end{array}\right)
$$

Find the point in W that is closest to y. Show and explain your computations.
answer: The closest point is the projection of y to W :

$$
\begin{aligned}
w & =A\left(A^{T} A\right)^{-1}\left(A^{T} y\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
0 & 1 \\
1 & 3
\end{array}\right)\left(\begin{array}{rr}
3 & 6 \\
6 & 15
\end{array}\right)^{-1}\binom{3}{12} \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
0 & 1 \\
1 & 3
\end{array}\right)\binom{-3}{2} \\
& =\left(\begin{array}{r}
-1 \\
1 \\
2 \\
-3
\end{array}\right)
\end{aligned}
$$

7. (1 point) Let

$$
y=\left(\begin{array}{l}
2 \\
0 \\
7 \\
1
\end{array}\right)
$$

and let W be the span of

$$
\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right) \text { and }\left(\begin{array}{l}
1 \\
2 \\
1 \\
3
\end{array}\right)
$$

Write y as a sum of a vector in W and a vector orthogonal to W. Show and explain your computations.
answer: The projection is

$$
\begin{aligned}
w & =A\left(A^{T} A\right)^{-1}\left(A^{T} y\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
0 & 1 \\
1 & 3
\end{array}\right)\left(\begin{array}{rr}
3 & 6 \\
6 & 15
\end{array}\right)^{-1}\binom{3}{12} \\
& =\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
0 & 1 \\
1 & 3
\end{array}\right)\binom{-3}{2} \\
& =\left(\begin{array}{r}
-1 \\
1 \\
2 \\
-3
\end{array}\right)
\end{aligned}
$$

The vector orthogonal to W is
$v=y-w=\left(\begin{array}{l}2 \\ 0 \\ 7 \\ 1\end{array}\right)-\left(\begin{array}{r}-1 \\ 1 \\ 2 \\ -3\end{array}\right)=\left(\begin{array}{r}3 \\ -1 \\ 5 \\ 4\end{array}\right)$.
We have $y=\left(\begin{array}{l}2 \\ 0 \\ 7 \\ 1\end{array}\right)=w+v=\left(\begin{array}{r}-1 \\ 1 \\ 2 \\ -3\end{array}\right)+\left(\begin{array}{r}3 \\ -1 \\ 5 \\ 4\end{array}\right)$.
8. (1 point) Let

$$
A=\left(\begin{array}{rr}
1 & 1 \\
2 & 3 \\
1 & 2 \\
1 & 2 \\
-1 & -1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{c}
1 \\
1 \\
1 \\
7 \\
7
\end{array}\right)
$$

Find the least squares solution to $A x=b$. Show and explain your computations.
answer: The normal equations $A^{T} A x=A^{T} b$
$\operatorname{are}\left(\begin{array}{rr}8 & 12 \\ 12 & 19\end{array}\right) x=\binom{4}{13}$,
and these have solution $x=\binom{-10}{7}$.
9. (1 point) Let

$$
A=\left(\begin{array}{rr}
1 & 1 \\
2 & 3 \\
1 & 2 \\
1 & 2 \\
-1 & -1
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
7 \\
-2 \\
1 \\
2 \\
2
\end{array}\right)
$$

Find the least squares error in the least squares solution to $A x=b$. Show and explain your computations.

HINT: The least squares solution is $x=\binom{-2}{1}$.
answer: The least squares error is $\|A x-b\|=\sqrt{59}$,
since $A x-b=\left(\begin{array}{r}1 \\ 1 \\ 0 \\ 0 \\ -1\end{array}\right)-\left(\begin{array}{r}7 \\ -2 \\ 1 \\ 2 \\ 2\end{array}\right)=\left(\begin{array}{r}-6 \\ 3 \\ -1 \\ -2 \\ -3\end{array}\right)$.
10. (1 point) Let

$$
Q=\left(\begin{array}{rr}
2 / 9 & 4 / 9 \\
-5 / 9 & 6 / 9 \\
-4 / 9 & 2 / 9 \\
6 / 9 & 5 / 9
\end{array}\right), R=\left(\begin{array}{rr}
5 & -11 \\
0 & 3
\end{array}\right) \text { and } b=\left(\begin{array}{r}
11 \\
-1 \\
3 \\
2
\end{array}\right)
$$

Use the QR factorization $A=Q R$ to find the least squares solution to $A x=b$.
Show your work.
answer: The equation $R x=Q^{T} b$ is $\left(\begin{array}{rr}5 & -11 \\ 0 & 3\end{array}\right) x=\binom{3}{6}$,
and this has solution $x=\binom{5}{2}$.
11. (1 point) Let

$$
A=\left(\begin{array}{rrr}
0 & -1 & 6 \\
-1 & 4 & -9 \\
-3 & 9 & -12 \\
1 & -3 & 3 \\
1 & -2 & 0
\end{array}\right)
$$

Find the QR factorization of A.
Show and explain your computations.
answer:

$$
Q=\left(\begin{array}{rrr}
0 & -1 / \sqrt{3} & 1 / \sqrt{3} \\
-1 / \sqrt{12} & 1 / \sqrt{3} & 0 \\
-3 / \sqrt{12} & 0 & 0 \\
1 / \sqrt{12} & 0 & -1 / \sqrt{3} \\
1 / \sqrt{12} & 1 / \sqrt{3} & 1 / \sqrt{3}
\end{array}\right)=\left(\begin{array}{rrr}
0 & -0.5774 & 0.5774 \\
-0.2887 & 0.5774 & 0 \\
-0.866 & 0 & 0 \\
0.2887 & 0 & -0.5774 \\
0.2887 & 0.5774 & 0.5774
\end{array}\right)
$$

and

$$
R=\left(\begin{array}{rrr}
12 / \sqrt{12} & -36 / \sqrt{12} & 48 / \sqrt{12} \\
0 & 3 / \sqrt{3} & -15 / \sqrt{3} \\
0 & 0 & 3 / \sqrt{3}
\end{array}\right)=\left(\begin{array}{rrr}
3.4641 & -10.3923 & 13.8564 \\
0 & 1.7321 & -8.6603 \\
0 & 0 & 1.7321
\end{array}\right)
$$

12. (1 point) Use the QDR factorization

$$
\begin{aligned}
A & =\underbrace{\left(\begin{array}{rrr}
-2 & 0 & 8 \\
-1 & -2 & -6 \\
-2 & -4 & -7 \\
1 & 0 & -4
\end{array}\right)}_{Q} \\
& =\underbrace{\left(\begin{array}{rrr}
-2 & 2 & 0 \\
-1 & -1 & -2 \\
-2 & -2 & 1 \\
1 & -1 & 0
\end{array}\right)}_{D} \underbrace{\left(\begin{array}{rrr}
1 / 10 & 0 & 0 \\
0 & 1 / 10 & 0 \\
0 & 0 & 1 / 5
\end{array}\right)}_{R} \underbrace{\left(\begin{array}{rrr}
10 & 10 & 0 \\
0 & 10 & 40 \\
0 & 0 & 5
\end{array}\right)}_{R}
\end{aligned}
$$

to find the least squares solution to $A x=b$ where $b=\left(\begin{array}{r}10 \\ -5 \\ 10 \\ -15\end{array}\right)$.
answer: Since $Q^{T} A=Q^{T} Q D R=R$, we just need to solve the equation $R x=Q^{T} b$.

This equation is $\left(\begin{array}{rrr}10 & 10 & 0 \\ 0 & 10 & 40 \\ 0 & 0 & 5\end{array}\right) x=\left(\begin{array}{r}-50 \\ 20 \\ 20\end{array}\right)$, and has solution $x=$ $\left(\begin{array}{r}9 \\ -14 \\ 4\end{array}\right)$.
13. (1 point) Let

$$
A=\left(\begin{array}{rrr}
-2 & 4 & -12 \\
3 & -2 & -1 \\
0 & 2 & -7 \\
1 & 0 & -1 \\
-4 & 4 & -10
\end{array}\right)
$$

Find the QDR factorization of A.
Show and explain your computations.
answer: Use Wedderburn rank reduction.

$$
\begin{gathered}
Q=\left(\begin{array}{rrr}
-2 & 2 & 0 \\
3 & 1 & -3 \\
0 & 2 & 1 \\
1 & 1 & 1 \\
-4 & 0 & -2
\end{array}\right) \\
D=\left(\begin{array}{rrr}
1 / 30 & 0 & 0 \\
0 & 1 / 10 & 0 \\
0 & 0 & 1 / 15
\end{array}\right) \\
R=\left(\begin{array}{rrr}
30 & -30 & 60 \\
0 & 10 & -40 \\
0 & 0 & 15
\end{array}\right)
\end{gathered}
$$

14. (1 point) Consider the data points $(1,-3),(2,-6),(3,9),(4,1)$.

Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the given data points.
Show and explain your computations.
answer: I need to find the least squares solution of

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4
\end{array}\right)\binom{\beta_{0}}{\beta_{1}}=\left(\begin{array}{r}
-3 \\
-6 \\
9 \\
1
\end{array}\right)
$$

The normal equations are $\left(\begin{array}{rr}4 & 10 \\ 10 & 30\end{array}\right)\binom{\beta_{0}}{\beta_{1}}=\binom{1}{16}$, and these have solution $\binom{\beta_{0}}{\beta_{1}}=\binom{-6.5}{2.7}$. The least squares line is

$$
y=-6.5+2.7 x
$$

15. (1 point) Consider the data points $(1,-5),(2,-7),(3,-4),(4,5)$.

Find the equation $y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}$ of the least-squares quadratic that best fits the given data points.
Show and explain your computations.
answer: I need to find the least squares solution of

$$
\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16
\end{array}\right)\left(\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right)=\left(\begin{array}{r}
-5 \\
-7 \\
-4 \\
5
\end{array}\right)
$$

The normal equations are $\left(\begin{array}{rrr}4 & 10 & 30 \\ 10 & 30 & 100 \\ 30 & 100 & 354\end{array}\right)\left(\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{2}\end{array}\right)=\left(\begin{array}{r}-11 \\ -11 \\ 11\end{array}\right)$, and these have solution $\left(\begin{array}{l}\beta_{0} \\ \beta_{1} \\ \beta_{2}\end{array}\right)=\left(\begin{array}{r}2.75 \\ -10.45 \\ 2.75\end{array}\right)$. The least squares curve is

$$
y=2.75-10.45 x+2.75 x^{2}
$$

