Chapter 4

Math 2890-001
Fall 2017
Name \qquad
Due Nov 13

1. (1 point) Let

$$
A=\left(\begin{array}{llll}
-154 & 112 & 58 & -36 \\
-183 & 133 & 68 & -42 \\
-198 & 144 & 77 & -48 \\
-226 & 164 & 86 & -53
\end{array}\right)
$$

Compute A^{9}. Show and explain your work.
HINT: It may help to know that $A P=P D$ where

$$
P=\left(\begin{array}{rrrr}
1 & 4 & 2 & 2 \\
1 & 5 & 4 & 1 \\
2 & 4 & -3 & 9 \\
2 & 5 & -1 & 9
\end{array}\right) \quad D=\left(\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) P^{-1}=\left(\begin{array}{rrrr}
-43 & 32 & 18 & -12 \\
14 & -10 & -5 & 3 \\
-7 & 5 & 2 & -1 \\
1 & -1 & -1 & 1
\end{array}\right)
$$

answer:

$$
\begin{aligned}
A^{9} & =P D^{9} P^{-1} \\
& =\left(\begin{array}{rrrr}
1 & 4 & 2 & 2 \\
1 & 5 & 4 & 1 \\
2 & 4 & -3 & 9 \\
2 & 5 & -1 & 9
\end{array}\right)\left(\begin{array}{rrrr}
512 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrrr}
-43 & 32 & 18 & -12 \\
14 & -10 & -5 & 3 \\
-7 & 5 & 2 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) \\
& =\left(\begin{array}{rrrr}
-22084 & 16432 & 9238 & -6156 \\
-22113 & 16453 & 9248 & -6162 \\
-44058 & 32784 & 18437 & -12288 \\
-44086 & 32804 & 18446 & -12293
\end{array}\right) .
\end{aligned}
$$

2. (1 point) Let

$$
A=\left(\begin{array}{llll}
0.6 & 0.2 & 0.5 & 0.1 \\
0.1 & 0.6 & 0.1 & 0.3 \\
0.1 & 0.1 & 0.3 & 0.1 \\
0.2 & 0.1 & 0.1 & 0.5
\end{array}\right)
$$

Find a steady state probability vector for the stochastic matrix A. Show and expain your work.
answer: A steady state probability vector x has to be a solution of

$$
(A-I) x=0
$$

and have nonnegative entries that sum to 1 . Since

$$
A-I=\left(\begin{array}{rrrr}
-0.4 & 0.2 & 0.5 & 0.1 \\
0.1 & -0.4 & 0.1 & 0.3 \\
0.1 & 0.1 & -0.7 & 0.1 \\
0.2 & 0.1 & 0.1 & -0.5
\end{array}\right) \text { we get } x=\left(\begin{array}{r}
0.3581 \\
0.2905 \\
0.125 \\
0.2264
\end{array}\right)
$$

after row reducing and making an appropriate choice of free variable.

