Chapter 2

Math 2890-001
Fall 2017
Name \qquad
Due Oct 13
Problems 1-13 are fair game for Exam 1.

1. (1 point) Let $A=\left(\begin{array}{llll}2 & 1 & 9 & 4 \\ 8 & 3 & 0 & 5 \\ 3 & 5 & 5 & 4\end{array}\right)$. Find A^{T}, the transpose of A.
answer: The transpose $A^{T}=\left(\begin{array}{ccc}2 & 8 & 3 \\ 1 & 3 & 5 \\ 9 & 0 & 5 \\ 4 & 5 & 4\end{array}\right)$.
2. (1 point) Let $A=\left(\begin{array}{lll}9 & 2 & 4 \\ 2 & 8 & 9 \\ 4 & 1 & 3\end{array}\right)$. Is A symmetric?
answer: A is not symmetric since $A_{23}=9 \neq 1=A_{32}$.
3. (1 point) Let

$$
A=\frac{1}{2}\left(\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

Is A orthogonal? Explain your answer.
answer: A is not orthogonal since $I \neq A^{T} A=\left(\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1\end{array}\right)$.
4. (3 points) For each of the following matrices, find the inverse if it exists. Show your work.
(a) $A=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$.
answer: $A^{-1}=\left(\begin{array}{rrr}0 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 0\end{array}\right)$.
(b) $B=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$.

$$
\text { answer: } A^{-1}=\left(\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right) .
$$

(c) $C=\left(\begin{array}{lll}3 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.
answer: $A^{-1}=\left(\begin{array}{rrr}0 & 0 & 1 \\ 0 & 1 & -2 \\ 1 & -2 & 1\end{array}\right)$.
5. (1 point) Let $A=\left(\begin{array}{rr}-2 & -1 \\ 8 & 8 \\ 0 & 1 \\ -1 & -8\end{array}\right)$ and $B=\left(\begin{array}{rr}3 & -2 \\ 6 & 5 \\ -6 & 4 \\ 8 & -3\end{array}\right)$.

Compute the sum $A+B$ (showing your work) if it is defined; otherwise, explain why it is not defined.
answer: The sum $A+B=\left(\begin{array}{rr}1 & -3 \\ 14 & 13 \\ -6 & 5 \\ 7 & -11\end{array}\right)$.
6. (1 point) Let $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right) \quad$ and $\quad v=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$.

Compute the product $A v$ (showing your work) if it is defined; otherwise, explain why it is not defined.
answer: The product $A v=\left(\begin{array}{c}10 \\ 4 \\ 1 \\ 6\end{array}\right)$.
7. (1 point) Let $v=\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)$ and $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$.

Compute the product $v A$ (showing your work) if it is defined; otherwise, explain why it is not defined.
answer: The product $v A=\left(\begin{array}{ccc}5 & 7 & 14\end{array}\right)$.
8. (1 point) Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 1 \\ 2 & 2\end{array}\right)$ and $B=\left(\begin{array}{llll}2 & 1 & 1 & 3 \\ 1 & 2 & 3 & 1\end{array}\right)$.

Compute the product $A B$ (showing your work) if it is defined; otherwise, explain why it is not defined.
answer: The product $A B=\left(\begin{array}{rrrr}4 & 5 & 7 & 5 \\ 7 & 5 & 6 & 10 \\ 6 & 6 & 8 & 8\end{array}\right)$.
9. (1 point) Suppose A is a 52×19 matrix and B is a 19×23 matrix. What size is the product $A B$ if it is defined? Explain your answer.
10. (1 point) Let $A=\left(\begin{array}{cc}4 & 2 \\ 2 & 8 \\ 3 & 1 \\ 9 & 1\end{array}\right)$ and $B=\left(\begin{array}{llll}3 & 9 & 4 & 6 \\ 6 & 1 & 3 & 2\end{array}\right)$.

Compute column 3 of $A B$ by first writing it as a linear combination of the columns of A. Show your work.
answer:

$$
\begin{aligned}
(A B)_{* 3} & =A\left(B_{* 3}\right) \\
& =\left(\begin{array}{ll}
4 & 2 \\
2 & 8 \\
3 & 1 \\
9 & 1
\end{array}\right)\binom{4}{3} \\
& =\left(\begin{array}{l}
4 \\
2 \\
3 \\
9
\end{array}\right)(4)+\left(\begin{array}{l}
2 \\
8 \\
1 \\
1
\end{array}\right) \\
& =\left(\begin{array}{l}
22 \\
32 \\
15 \\
39
\end{array}\right)
\end{aligned}
$$

11. (1 point) Let $A=\left(\begin{array}{cc}4 & 2 \\ 2 & 8 \\ 3 & 1 \\ 9 & 1\end{array}\right)$ and $B=\left(\begin{array}{llll}3 & 9 & 4 & 6 \\ 6 & 1 & 3 & 2\end{array}\right)$.

Compute row 2 of $A B$ by first writing it as a linear combination of the rows of B. Show your work.
answer:

$$
\begin{aligned}
(A B)_{2 *} & =\left(A_{2 *}\right) B \\
& =\left(\begin{array}{ll}
2 & 8
\end{array}\right)\left(\begin{array}{cccc}
3 & 9 & 4 & 6 \\
6 & 1 & 3 & 2
\end{array}\right) \\
& =\left(\begin{array}{llll}
2
\end{array}\right)\left(\begin{array}{llll}
3 & 9 & 4 & 6
\end{array}\right)+(8)\left(\begin{array}{llll}
6 & 1 & 3 & 2
\end{array}\right) \\
& =\left(\begin{array}{llll}
54 & 26 & 32 & 28
\end{array}\right)
\end{aligned}
$$

12. (1 point) Let $A=\left(\begin{array}{cc}4 & 2 \\ 2 & 8 \\ 3 & 1 \\ 9 & 1\end{array}\right)$ and $B=\left(\begin{array}{llll}3 & 9 & 4 & 6 \\ 6 & 1 & 3 & 2\end{array}\right)$.

Compute the entry in row 3 , column 2 of the product $A B$. Show your work.
answer:

$$
\begin{aligned}
(A B)_{32} & =A_{3 *} B_{* 2} \\
& =\left(\begin{array}{ll}
3 & 1
\end{array}\right)\binom{9}{1} \\
& =28
\end{aligned}
$$

13. (1 point) Let $A=\left(\begin{array}{ll}4 & 2 \\ 2 & 8 \\ 3 & 1 \\ 9 & 1\end{array}\right)$ and $B=\left(\begin{array}{llll}3 & 9 & 4 & 6 \\ 6 & 1 & 3 & 2\end{array}\right)$.

Write the product $A B$ as a sum of 2 rank one matrices. Show your work.
answer:

$$
\left.\left.\begin{array}{rl}
A B & =A_{* 1} B_{1 *}+A_{* 2} B_{2 *} \\
& =\left(\begin{array}{l}
4 \\
2 \\
3 \\
9
\end{array}\right)\left(\begin{array}{llll}
3 & 9 & 4 & 6
\end{array}\right)+\left(\begin{array}{l}
2 \\
8 \\
1 \\
1
\end{array}\right)\left(\begin{array}{lll}
6 & 1 & 3
\end{array}\right) 2
\end{array}\right), \begin{array}{rrrr}
12 & 36 & 16 & 24 \\
6 & 18 & 8 & 12 \\
9 & 27 & 12 & 18 \\
17 & 81 & 36 & 54
\end{array}\right)+\left(\begin{array}{rrrr}
12 & 2 & 6 & 4 \\
48 & 8 & 24 & 16 \\
6 & 1 & 3 & 2 \\
6 & 1 & 3 & 2
\end{array}\right), ~ l
$$

The remaining problems will not be covered on Exam 1.
14. (1 point) Let

$$
\begin{gathered}
A=\left(\begin{array}{rrr}
5 & -4 & -1 \\
-10 & 4 & 2 \\
25 & -8 & -3
\end{array}\right) \quad L=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
5 & -3 & 1
\end{array}\right) \\
U=\left(\begin{array}{rrr}
5 & -4 & -1 \\
0 & -4 & 0 \\
0 & 0 & 2
\end{array}\right) \text { and } b=\left(\begin{array}{r}
-10 \\
-8 \\
48
\end{array}\right)
\end{gathered}
$$

Use the LU factorization $A=L U$ to solve the matrix equation $A x=b$. Show your work.
answer: The vector $y=\left(\begin{array}{r}-10 \\ -28 \\ 14\end{array}\right)$ is the solution of the system $L y=b$.
and the vector $x=\left(\begin{array}{l}5 \\ 7 \\ 7\end{array}\right)$ is the solution of $U x=y$ and so of $A x=b$.
15. (1 point) Let

$$
A=\left(\begin{array}{rrr}
4 & -2 & 5 \\
12 & -3 & 18 \\
-4 & -13 & -17
\end{array}\right)
$$

Use Wedderburn rank reduction (or Gaussian Elimination) to find the LDU (or LU) factorization of the matrix A. Show your work.
answer: Either $A=L D U$ where
$L=\left(\begin{array}{rrr}4 & 0 & 0 \\ 12 & 3 & 0 \\ -4 & -15 & 3\end{array}\right) \quad D=\left(\begin{array}{rrr}1 / 4 & 0 & 0 \\ 0 & 1 / 3 & 0 \\ 0 & 0 & 1 / 3\end{array}\right) \quad U=\left(\begin{array}{rrr}4 & -2 & 5 \\ 0 & 3 & 3 \\ 0 & 0 & 3\end{array}\right)$,
or $A=L U$ where

$$
L=\left(\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
-1 & -5 & 1
\end{array}\right) \quad U=\left(\begin{array}{rrr}
4 & -2 & 5 \\
0 & 3 & 3 \\
0 & 0 & 3
\end{array}\right)
$$

16. (1 point) Let

$$
A=\left(\begin{array}{rrr}
15 & 0 & 13 \\
-20 & 8 & -4 \\
10 & -13 & -1
\end{array}\right)
$$

Use Wedderburn rank reductin (or Gaussian Elimination with Partial Pivoting) to find the permuted LDU (or permuted LU) factorization of the matrix A. Show your work.
answer: Either $A=L D U$ where
$L=\left(\begin{array}{rrr}15 & 6 & 8 \\ -20 & 0 & 0 \\ 10 & -9 & 0\end{array}\right) \quad D=\left(\begin{array}{rrr}-1 / 20 & 0 & 0 \\ 0 & -1 / 9 & 0 \\ 0 & 0 & 1 / 8\end{array}\right) \quad U=\left(\begin{array}{rrr}-20 & 8 & -4 \\ 0 & -9 & -3 \\ 0 & 0 & 8\end{array}\right)$,
or $A=L U$ where

$$
L=\left(\begin{array}{ccc}
-0.75 & -0.6667 & 1 \\
1 & 0 & 0 \\
-0.5 & 1 & 0
\end{array}\right) \quad U=\left(\begin{array}{rrr}
-20 & 8 & -4 \\
0 & -9 & -3 \\
0 & 0 & 8
\end{array}\right)
$$

17. (2 points) Let

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right)
$$

(a) Is v in the column space of A ? Show your work.
(b) Is v in the null space of A ? Show your work.
answer: (a) Since $(A \mid v)$ does not have a pivot in the last column $A x=v$ is consistent, and v is in the column space of A.
(b) v is in the null space of A since $A v=0$.
18. (2 points) Let

$$
A=\left(\begin{array}{rrr}
1 & 2 & 0 \\
2 & 5 & 1 \\
1 & 1 & -1
\end{array}\right)
$$

(a) Find a nonzero vector in the column space of A. Show your work.
(b) Find a nonzero vector in the null space of A. Show your work.
answer: (a) I found the vector $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ in the column space. You'll probably find a different vector.
(b) I found the vector $\left(\begin{array}{r}2 \\ -1 \\ 1\end{array}\right)$ in the null space. You'll probably find a different vector.
19. (1 point) Let

$$
A=\left(\begin{array}{rrrrrr}
-5 & 5 & 2 & 25 & 18 & -2 \\
-2 & 0 & 2 & 10 & 2 & -1 \\
-2 & -4 & 4 & 8 & -8 & -4 \\
-5 & -3 & 5 & 16 & -1 & 0 \\
2 & 2 & 0 & 6 & 0 & -2
\end{array}\right)
$$

Find bases for $\operatorname{Col}(A)$ and $\operatorname{Nul}(A)$.
Hint: The reduced row echelon form of A is

$$
\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & 3 & 2 & 0 \\
0 & 0 & 1 & 5 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

answer: The columns of the matrix $\left(\begin{array}{rrrr}-5 & 5 & 2 & -2 \\ -2 & 0 & 2 & -1 \\ -2 & -4 & 4 & -4 \\ -5 & -3 & 5 & 0 \\ 2 & 2 & 0 & -2\end{array}\right)$ are a basis for
the column space of A.
The columns of the matrix $\left(\begin{array}{rr}0 & 2 \\ -3 & -2 \\ -5 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ are a basis for the null space of
A.
20. (1 point) Let

$$
A=\left(\begin{array}{rrrrr}
58 & -15 & -144 & -204 & 11 \\
101 & -27 & -249 & -357 & -4 \\
-45 & 12 & 111 & 159 & 1 \\
15 & -4 & -37 & -53 & 0
\end{array}\right)
$$

Find bases for $\operatorname{Col}(A), \operatorname{Nul}(A), \operatorname{Col}\left(A^{T}\right)$ and $\operatorname{Nul}\left(A^{T}\right)$.
Hint: If you form the matrix $(A \mid I)$ and use row operations to put the A part in reduced row echelon form you get $(R \mid S)$ where

$$
R=\left(\begin{array}{rrrrr}
1 & 0 & -3 & -3 & 0 \\
0 & 1 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), S=\left(\begin{array}{rrrr}
1 & 3 & 1 & -21 \\
4 & 13 & 8 & -79 \\
-1 & -7 & -16 & 3 \\
1 & 7 & 17 & 0
\end{array}\right)
$$

answer: The columns of the matrix $\left(\begin{array}{rrr}58 & -15 & 11 \\ 101 & -27 & -4 \\ -45 & 12 & 1 \\ 15 & -4 & 0\end{array}\right)$ form a basis for the column space of A.

The columns of the matrix $\left(\begin{array}{rr}3 & 3 \\ 2 & -2 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$ form a basis for the null space of
A.

The columns of the matrix $\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & -2 & 0 \\ -3 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$ form a basis for the column space of A^{T}.

The columns of the matrix $\left(\begin{array}{r}1 \\ 7 \\ 17 \\ 0\end{array}\right)$ form a basis for the null space of A^{T}.
21. (1 point) Let

$$
A=\left(\begin{array}{rrrrr}
1 & 2 & 8 & 1 & 5 \\
2 & 1 & 7 & 2 & 7 \\
1 & 1 & 5 & 0 & 2 \\
3 & 2 & 12 & 1 & 7
\end{array}\right)
$$

Find the rank of the matrix A. Explain your answer.
answer: The reduced row echelon form of A is

$$
\left(\begin{array}{lllll}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & 3 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

a matrix having 3 pivots, so the rank of A is 3 .

