Chapter 1

Math 2890-001 Fall 2017 Due Sep 22

Name		

1. (1 point) Write out the augmented matrix corresponding to the linear system.

2. (1 point) Write out the linear system corresponding to the augmented matrix.

$$\left(\begin{array}{cccc|cccc}
1 & 8 & -2 & 7 & 9 & 0 & 2 \\
3 & -7 & 8 & 2 & 0 & 2 & 6 \\
0 & 0 & 0 & 1 & -2 & 2 & 3 \\
-4 & 2 & -1 & 3 & 8 & 1 & 5 \\
5 & 9 & 5 & 4 & 1 & -9 & -4
\end{array}\right)$$

$$u = \begin{pmatrix} 3 \\ -3 \\ 4 \end{pmatrix}, v = \begin{pmatrix} 6 \\ -2 \\ 6 \end{pmatrix}, w = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \text{ and } x = \begin{pmatrix} 3 \\ -3 \\ -1 \end{pmatrix}.$$

Do the given vectors span \mathbb{R}^3 ? Show your work. Explain your answer.

answer: The vectors span \mathbb{R}^3 since (after constructing a matrix using the vectors as the columns) every row has a pivot.

$$u = \begin{pmatrix} -2 \\ 0 \\ 3 \\ 2 \end{pmatrix}, \ v = \begin{pmatrix} -6 \\ -2 \\ 18 \\ 8 \end{pmatrix} \text{ and } w = \begin{pmatrix} 6 \\ -8 \\ 0 \\ 2 \end{pmatrix}.$$

Are the given vectors linearly independent? Show your work. Explain your answer.

answer: Yes, the vectors are linearly independent since (after constructing a matrix using the vectors as the columns) there is a pivot in every column.

5. (2 points) Determine whether the following matrices are

RREF = in reduced row echelon form,

UREF = in row echelon form, but not in reduced row echelon form, or

NOEF = neither in row echelon form or in reduced row echelon form.

(a)

$$\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

(b)

$$\left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

(c)

$$\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)$$

(d)

$$\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

answer:

- (a) RREF
- (b) UREF
- (c) RREF
- (d) NOEF

$$A = \left(\begin{array}{rrrr} 3 & 6 & 3 & 1 \\ -6 & -12 & -11 & 1 \\ 9 & 18 & 4 & 8 \end{array}\right).$$

Use **Gaussian elimination** to reduce the matrix A to row echelon form. Notice that this problem doesn't involve a linear system, it is just an exercise in *row reduction*.

Show your work.

answer:

$$\begin{pmatrix} 3 & 6 & 3 & 1 \\ -6 & -12 & -11 & 1 \\ 9 & 18 & 4 & 8 \end{pmatrix} \sim \begin{pmatrix} 3 & 6 & 3 & 1 \\ 0 & 0 & -5 & 3 \\ 9 & 18 & 4 & 8 \end{pmatrix}$$
$$\sim \begin{pmatrix} 3 & 6 & 3 & 1 \\ 0 & 0 & -5 & 3 \\ 0 & 0 & -5 & 5 \end{pmatrix}$$
$$\sim \begin{pmatrix} 3 & 6 & 3 & 1 \\ 0 & 0 & -5 & 3 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$A = \left(\begin{array}{cccc} 9 & 4 & -8 & -2 \\ 18 & 12 & -24 & 12 \\ -3 & 4 & 1 & 7 \end{array}\right).$$

Use Gaussian elimination with partial pivoting to reduce the matrix A to row echelon form. Notice that this problem doesn't involve a linear system, it is just an exercise in *row reduction*.

Show your work.

answer:

$$\begin{pmatrix} 9 & 4 & -8 & -2 \\ 18 & 12 & -24 & 12 \\ -3 & 4 & 1 & 7 \end{pmatrix} \sim \begin{pmatrix} 18 & 12 & -24 & 12 \\ 9 & 4 & -8 & -2 \\ -3 & 4 & 1 & 7 \end{pmatrix}$$

$$\sim \begin{pmatrix} 18 & 12 & -24 & 12 \\ 0 & -2 & 4 & -8 \\ -3 & 4 & 1 & 7 \end{pmatrix}$$

$$\sim \begin{pmatrix} 18 & 12 & -24 & 12 \\ 0 & -2 & 4 & -8 \\ 0 & 6 & -3 & 9 \end{pmatrix}$$

$$\sim \begin{pmatrix} 18 & 12 & -24 & 12 \\ 0 & 6 & -3 & 9 \\ 0 & -2 & 4 & -8 \end{pmatrix}$$

$$\sim \begin{pmatrix} 18 & 12 & -24 & 12 \\ 0 & 6 & -3 & 9 \\ 0 & -2 & 4 & -8 \end{pmatrix}$$

$$\sim \begin{pmatrix} 18 & 12 & -24 & 12 \\ 0 & 6 & -3 & 9 \\ 0 & 0 & 3 & -5 \end{pmatrix}$$

$$A = \left(\begin{array}{ccccc} 4 & 3 & -14 & -7 & -2 \\ 3 & -2 & -2 & -1 & 4 \\ 1 & 4 & -10 & -5 & -4 \\ 5 & 2 & -14 & -7 & -3 \end{array}\right).$$

Find the reduced row echelon form of A. Notice that this problem doesn't involve a linear system, it is just an exercise in *row reduction*. Also, you are not obliged to use Gaussian elimination for this problem; some semblance of free will is returned.

Show your work.

answer: The reduced row echelon form is $\left(\begin{array}{ccccc} 1 & 0 & -2 & -1 & 0 \\ 0 & 1 & -2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right).$

$$A = \begin{pmatrix} -3 & 3 & -2 \\ -9 & 12 & -3 \\ 6 & -15 & -6 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 3 \\ 3 \\ 15 \end{pmatrix}.$$

Solve the equation Ax = b or explain why it doesn't have a solution. Show your work.

answer:

$$(A \mid b) = \begin{pmatrix} -3 & 3 & -2 \mid & 3 \\ -9 & 12 & -3 \mid & 3 \\ 6 & -15 & -6 \mid & 15 \end{pmatrix}$$

$$\sim \begin{pmatrix} -3 & 3 & -2 \mid & 3 \\ 0 & 3 & 3 \mid & -6 \\ 0 & 0 & -1 \mid & 3 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 \mid & 2 \\ 0 & 1 & 0 \mid & 1 \\ 0 & 0 & 1 \mid & -3 \end{pmatrix}$$

The solution is $x = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$.

$$A = \begin{pmatrix} 2 & 3 & 1 \\ -2 & 1 & 3 \\ 4 & 10 & 6 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 3 \\ 1 \\ 5 \end{pmatrix}.$$

Solve the equation Ax=b or explain why it doesn't have a solution. Show your work.

answer: The system is inconsistent because the augmented matrix $(A \mid b)$ has a pivot in the last column.

$$A = \begin{pmatrix} -1 & 1 & 3 \\ -1 & -1 & -1 \\ 1 & -4 & 1 \\ 1 & -3 & 2 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 10 \\ -8 \\ 3 \\ 8 \end{pmatrix}.$$

Solve the equation Ax = b or explain why it doesn't have a solution. Show your work.

answer:

$$(A \mid b) = \begin{pmatrix} -1 & 1 & 3 \mid 10 \\ -1 & -1 & -1 \mid -8 \\ 1 & -4 & 1 \mid 3 \\ 1 & -3 & 2 \mid 8 \end{pmatrix}$$

$$\sim \begin{pmatrix} -1 & 1 & 3 \mid 10 \\ 0 & -2 & -4 \mid -18 \\ 0 & -3 & 4 \mid 13 \\ 0 & -2 & 5 \mid 18 \end{pmatrix}$$

$$\sim \begin{pmatrix} -1 & 1 & 3 \mid 10 \\ 0 & -2 & -4 \mid -18 \\ 0 & 0 & 10 \mid 40 \\ 0 & 0 & 9 \mid 36 \end{pmatrix}$$

$$\sim \begin{pmatrix} -1 & 1 & 3 \mid 10 \\ 0 & -2 & -4 \mid -18 \\ 0 & 0 & 10 \mid 40 \\ 0 & 0 & 9 \mid 36 \end{pmatrix}$$
so consistent
$$\sim \begin{pmatrix} 1 & 1 & 3 \mid 10 \\ 0 & -2 & -4 \mid -18 \\ 0 & 0 & 10 \mid 40 \\ 0 & 0 & 0 \mid 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 \mid 3 \\ 0 & 1 & 0 \mid 1 \\ 0 & 0 & 1 \mid 4 \\ 0 & 0 & 0 \mid 0 \end{pmatrix}$$

The solution is $x = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$.

$$A = \begin{pmatrix} 5 & 5 & 20 & 30 & 0 & 1 \\ 2 & -2 & 12 & 8 & 4 & -2 \\ -5 & 4 & -29 & -21 & 4 & 0 \\ -2 & -4 & -6 & -14 & -3 & -2 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} -75 \\ -30 \\ -29 \\ 70 \end{pmatrix}.$$

Find the general solution of the equation Ax = b. Show your work. HINT: The augmented matrix $(A \mid b)$ has reduced row echelon form

$$\left(\begin{array}{cccc|cccc}
1 & 0 & 5 & 5 & 0 & 0 & -7 \\
0 & 1 & -1 & 1 & 0 & 0 & -8 \\
0 & 0 & 0 & 0 & 1 & 0 & -8 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)$$

answer: The general solution is

$$x = \begin{pmatrix} -7 \\ -8 \\ 0 \\ 0 \\ -8 \\ 0 \end{pmatrix} + \begin{pmatrix} -5 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} r \begin{pmatrix} -5 \\ -1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} s$$

where $r, s \in \mathbb{R}$.

$$v = \begin{pmatrix} 5 \\ -4 \\ 8 \\ -1 \\ 0 \end{pmatrix} \quad \text{and} \quad w = \begin{pmatrix} -7 \\ -7 \\ -3 \\ -2 \\ 2 \end{pmatrix}.$$

Compute the sum v+w if it is defined; otherwise, explain why it is not defined.

answer: The sum
$$v+w=\begin{pmatrix} -2\\-11\\5\\-3\\2 \end{pmatrix}$$
 .

14. (1 point) Let

$$v = \begin{pmatrix} -6\\9\\-1\\2\\-4\\-7 \end{pmatrix} \quad \text{and} \quad w = \begin{pmatrix} 2\\2\\-8\\0\\7 \end{pmatrix}.$$

Compute the sum v+w if it is defined; otherwise, explain why it is not defined.

answer: The sum v+w is not defined because v and w have different dimensions.

$$\alpha = -7$$
, $\beta = 5$, $v = \begin{pmatrix} 2\\9\\-1\\7 \end{pmatrix}$ and $w = \begin{pmatrix} -1\\7\\6\\-1 \end{pmatrix}$.

Compute the linear combination $v\alpha + w\beta$, or explain why it is impossible. Show your work.

answer: The linear combination
$$v\alpha+w\beta=\left(\begin{array}{c} -19\\ -28\\ 37\\ -54 \end{array}\right).$$