## Chapter 1

Math 2890-001
Fall 2017
Name
Due Sep 22

1. (1 point) Write out the augmented matrix corresponding to the linear system.

$$
\begin{aligned}
& 4 x_{1}+5 x_{2}-3 x_{3}-3 x_{4}+x_{5}+7 x_{6}=-2 \\
& -7 x_{1}+2 x_{2}+9 x_{3}+8 x_{4}+3 x_{6}=8 \\
& -8 x_{2}-2 x_{3}+6 x_{4}-2 x_{5}-3 x_{6}=9 \\
& x_{1}-3 x_{2}-5 x_{4}+8 x_{5}+2 x_{6}=0 \\
& 3 x_{1}+x_{2}-3 x_{3}+5 x_{4}+2 x_{5}+x_{6}=1
\end{aligned}
$$

2. (1 point) Write out the linear system corresponding to the augmented matrix.

$$
\left(\begin{array}{rrrrrr|r}
1 & 8 & -2 & 7 & 9 & 0 & 2 \\
3 & -7 & 8 & 2 & 0 & 2 & 6 \\
0 & 0 & 0 & 1 & -2 & 2 & 3 \\
-4 & 2 & -1 & 3 & 8 & 1 & 5 \\
5 & 9 & 5 & 4 & 1 & -9 & -4
\end{array}\right)
$$

3. (1 point) Let

$$
u=\left(\begin{array}{r}
3 \\
-3 \\
4
\end{array}\right), v=\left(\begin{array}{r}
6 \\
-2 \\
6
\end{array}\right), w=\left(\begin{array}{r}
3 \\
-1 \\
2
\end{array}\right) \text { and } x=\left(\begin{array}{r}
3 \\
-3 \\
-1
\end{array}\right) .
$$

Do the given vectors span $\mathbb{R}^{3}$ ?
Show your work. Explain your answer.
answer: The vectors span $\mathbb{R}^{3}$ since (after constructing a matrix using the vectors as the columns) every row has a pivot.
4. (1 point) Let

$$
u=\left(\begin{array}{r}
-2 \\
0 \\
3 \\
2
\end{array}\right), v=\left(\begin{array}{r}
-6 \\
-2 \\
18 \\
8
\end{array}\right) \text { and } w=\left(\begin{array}{r}
6 \\
-8 \\
0 \\
2
\end{array}\right)
$$

Are the given vectors linearly independent? Show your work. Explain your answer.
answer: Yes, the vectors are linearly independent since (after constructing a matrix using the vectors as the columns) there is a pivot in every column.
5. (2 points) Determine whether the following matrices are

RREF $=$ in reduced row echelon form,
UREF $=$ in row echelon form, but not in reduced row echelon form, or
NOEF $=$ neither in row echelon form or in reduced row echelon form.
(a)

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(c)

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(d)

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

answer:
(a) RREF
(b) UREF
(c) RREF
(d) NOEF
6. (1 point) Let

$$
A=\left(\begin{array}{rrrr}
3 & 6 & 3 & 1 \\
-6 & -12 & -11 & 1 \\
9 & 18 & 4 & 8
\end{array}\right)
$$

Use Gaussian elimination to reduce the matrix $A$ to row echelon form. Notice that this problem doesn't involve a linear system, it is just an exercise in row reduction.

Show your work.
answer:

$$
\begin{aligned}
\left(\begin{array}{rrrr}
3 & 6 & 3 & 1 \\
-6 & -12 & -11 & 1 \\
9 & 18 & 4 & 8
\end{array}\right) & \sim\left(\begin{array}{rrrr}
3 & 6 & 3 & 1 \\
0 & 0 & -5 & 3 \\
9 & 18 & 4 & 8
\end{array}\right) \\
& \sim\left(\begin{array}{rrrr}
3 & 6 & 3 & 1 \\
0 & 0 & -5 & 3 \\
0 & 0 & -5 & 5
\end{array}\right) \\
& \sim\left(\begin{array}{rrrr}
3 & 6 & 3 & 1 \\
0 & 0 & -5 & 3 \\
0 & 0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

7. (1 point) Let

$$
A=\left(\begin{array}{rrrr}
9 & 4 & -8 & -2 \\
18 & 12 & -24 & 12 \\
-3 & 4 & 1 & 7
\end{array}\right)
$$

Use Gaussian elimination with partial pivoting to reduce the matrix $A$ to row echelon form. Notice that this problem doesn't involve a linear system, it is just an exercise in row reduction.
Show your work.
answer:

$$
\begin{aligned}
\left(\begin{array}{rrrr}
9 & 4 & -8 & -2 \\
18 & 12 & -24 & 12 \\
-3 & 4 & 1 & 7
\end{array}\right) & \sim\left(\begin{array}{rrrr}
18 & 12 & -24 & 12 \\
9 & 4 & -8 & -2 \\
-3 & 4 & 1 & 7
\end{array}\right) \\
& \sim\left(\begin{array}{rrrr}
18 & 12 & -24 & 12 \\
0 & -2 & 4 & -8 \\
-3 & 4 & 1 & 7
\end{array}\right) \\
& \sim\left(\begin{array}{rrrr}
18 & 12 & -24 & 12 \\
0 & -2 & 4 & -8 \\
0 & 6 & -3 & 9
\end{array}\right) \\
& \sim\left(\begin{array}{rrrr}
18 & 12 & -24 & 12 \\
0 & 6 & -3 & 9 \\
0 & -2 & 4 & -8
\end{array}\right) \\
& \sim\left(\begin{array}{rrrr}
18 & 12 & -24 & 12 \\
0 & 6 & -3 & 9 \\
0 & 0 & 3 & -5
\end{array}\right)
\end{aligned}
$$

8. (1 point) Let

$$
A=\left(\begin{array}{rrrrr}
4 & 3 & -14 & -7 & -2 \\
3 & -2 & -2 & -1 & 4 \\
1 & 4 & -10 & -5 & -4 \\
5 & 2 & -14 & -7 & -3
\end{array}\right)
$$

Find the reduced row echelon form of $A$. Notice that this problem doesn't involve a linear system, it is just an exercise in row reduction. Also, you are not obliged to use Gaussian elimination for this problem; some semblance of free will is returned.

Show your work.
answer: The reduced row echelon form is $\left(\begin{array}{rrrrr}1 & 0 & -2 & -1 & 0 \\ 0 & 1 & -2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$.
9. (1 point) Let

$$
A=\left(\begin{array}{rrr}
-3 & 3 & -2 \\
-9 & 12 & -3 \\
6 & -15 & -6
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
3 \\
3 \\
15
\end{array}\right)
$$

Solve the equation $A x=b$ or explain why it doesn't have a solution. Show your work.
answer:

$$
\begin{aligned}
(A \mid b) & =\left(\begin{array}{rrr|r}
-3 & 3 & -2 & 3 \\
-9 & 12 & -3 & 3 \\
6 & -15 & -6 & 15
\end{array}\right) \\
& \sim\left(\begin{array}{rrr|r}
-3 & 3 & -2 & 3 \\
0 & 3 & 3 & -6 \\
0 & 0 & -1 & 3
\end{array}\right) \\
& \sim\left(\begin{array}{rrr|r}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & -3
\end{array}\right)
\end{aligned}
$$

The solution is $x=\left(\begin{array}{r}2 \\ 1 \\ -3\end{array}\right)$.
10. (1 point) Let

$$
A=\left(\begin{array}{rrr}
2 & 3 & 1 \\
-2 & 1 & 3 \\
4 & 10 & 6
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{l}
3 \\
1 \\
5
\end{array}\right)
$$

Solve the equation $A x=b$ or explain why it doesn't have a solution.
Show your work.
answer: The system is inconsistent because the augmented matrix $(A \mid b)$ has a pivot in the last column.
11. (1 point) Let

$$
A=\left(\begin{array}{rrr}
-1 & 1 & 3 \\
-1 & -1 & -1 \\
1 & -4 & 1 \\
1 & -3 & 2
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
10 \\
-8 \\
3 \\
8
\end{array}\right)
$$

Solve the equation $A x=b$ or explain why it doesn't have a solution. Show your work.
answer:

$$
\begin{aligned}
& (A \mid b)=\left(\begin{array}{rrr|r}
-1 & 1 & 3 & 10 \\
-1 & -1 & -1 & -8 \\
1 & -4 & 1 & 3 \\
1 & -3 & 2 & 8
\end{array}\right) \\
& \sim\left(\begin{array}{rrr|r}
-1 & 1 & 3 & 10 \\
0 & -2 & -4 & -18 \\
0 & -3 & 4 & 13 \\
0 & -2 & 5 & 18
\end{array}\right) \\
& \sim\left(\begin{array}{rrr|r}
-1 & 1 & 3 & 10 \\
0 & -2 & -4 & -18 \\
0 & 0 & 10 & 40 \\
0 & 0 & 9 & 36
\end{array}\right) \\
& \sim\left(\begin{array}{rrr|r}
-1 & 1 & 3 & 10 \\
0 & -2 & -4 & -18 \\
0 & 0 & 10 & 40 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \text { so consistent } \\
& \sim\left(\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The solution is $x=\left(\begin{array}{l}3 \\ 1 \\ 4\end{array}\right)$.
12. (1 point) Let

$$
A=\left(\begin{array}{rrrrrr}
5 & 5 & 20 & 30 & 0 & 1 \\
2 & -2 & 12 & 8 & 4 & -2 \\
-5 & 4 & -29 & -21 & 4 & 0 \\
-2 & -4 & -6 & -14 & -3 & -2
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{r}
-75 \\
-30 \\
-29 \\
70
\end{array}\right)
$$

Find the general solution of the equation $A x=b$. Show your work. HINT: The augmented matrix $(A \mid b)$ has reduced row echelon form

$$
\left(\begin{array}{rrrrrr|r}
1 & 0 & 5 & 5 & 0 & 0 & -7 \\
0 & 1 & -1 & 1 & 0 & 0 & -8 \\
0 & 0 & 0 & 0 & 1 & 0 & -8 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

answer: The general solution is

$$
x=\left(\begin{array}{r}
-7 \\
-8 \\
0 \\
0 \\
-8 \\
0
\end{array}\right)+\left(\begin{array}{r}
-5 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right) r\left(\begin{array}{r}
-5 \\
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right) s
$$

where $r, s \in \mathbb{R}$.
13. (1 point) Let

$$
v=\left(\begin{array}{r}
5 \\
-4 \\
8 \\
-1 \\
0
\end{array}\right) \quad \text { and } \quad w=\left(\begin{array}{r}
-7 \\
-7 \\
-3 \\
-2 \\
2
\end{array}\right)
$$

Compute the sum $v+w$ if it is defined; otherwise, explain why it is not defined.
answer: The sum $v+w=\left(\begin{array}{r}-2 \\ -11 \\ 5 \\ -3 \\ 2\end{array}\right)$.
14. (1 point) Let

$$
v=\left(\begin{array}{r}
-6 \\
9 \\
-1 \\
2 \\
-4 \\
-7
\end{array}\right) \quad \text { and } \quad w=\left(\begin{array}{r}
2 \\
2 \\
-8 \\
0 \\
7
\end{array}\right)
$$

Compute the sum $v+w$ if it is defined; otherwise, explain why it is not defined.
answer: The sum $v+w$ is not defined because $v$ and $w$ have different dimensions.
15. (1 point) Let

$$
\alpha=-7, \quad \beta=5, \quad v=\left(\begin{array}{r}
2 \\
9 \\
-1 \\
7
\end{array}\right) \quad \text { and } \quad w=\left(\begin{array}{r}
-1 \\
7 \\
6 \\
-1
\end{array}\right)
$$

Compute the linear combination $v \alpha+w \beta$, or explain why it is impossible. Show your work.

$$
\text { answer: The linear combination } v \alpha+w \beta=\left(\begin{array}{r}
-19 \\
-28 \\
37 \\
-54
\end{array}\right) \text {. }
$$

