George Herriman's Krazy Kat is lounging under an umbrella.

Numerical Methods & Linear Algebra

Math 2890-003

Fall 2016 Homework

Chapter 1 — Due Sep 13


  1. Write out the augmented matrix corresponding to the linear system. \[ \begin{array}{rrrrrrrrrrrrr} 4x_1 &+& 5x_2 &-& 3x_3 &-& 3x_4 &+& x_5 &+& 7x_6 &=& -2 \\ -7x_1 &+& 2x_2 &+& 9x_3 &+& 8x_4 & & &+& 3x_6 &=& 8 \\ &-& 8x_2 &-& 2x_3 &+& 6x_4 &-& 2x_5 &-& 3x_6 &=& 9 \\ x_1 &-& 3x_2 & & &-& 5x_4 &+& 8x_5 &+& 2x_6 &=& 0 \\ 3x_1 &+& x_2 &-& 3x_3 &+& 5x_4 &+& 2x_5 &+& x_6 &=& 1 \end{array} \]

  2. Write out the linear system corresponding to the augmented matrix. \[ \left( \begin{array}{rrrrrr|r} 1 & 8 & -2 & 7 & 9 & 0 & 2 \\ 3 & -7 & 8 & 2 & 0 & 2 & 6 \\ 0 & 0 & 0 & 1 &-2 & 2 & 3 \\ -4 & 2 & -1 & 3 & 8 & 1 & 5 \\ 5 & 9 & 5 & -4 & 1 &-9 &-4 \end{array} \right) \]

  3. Let \[ u =\left(\begin{array}{r} 1 \\ -5 \\ 5 \end{array}\right),\quad v =\left(\begin{array}{r} 0 \\ 4 \\ 2 \end{array}\right),\quad w=\left(\begin{array}{r} 5 \\ -17 \\ 29 \end{array}\right)\quad \text{and}\quad x = \left(\begin{array}{r} -1 \\ -7 \\ -11 \end{array}\right). \] Do the given vectors span $\mathbb{R}^3$? Show your work. Explain your answer.

  4. Let \[ u=\left(\begin{array}{r} -2 \\ 0 \\ 3 \end{array}\right),\quad v=\left(\begin{array}{r} -6 \\ -2 \\ 18 \end{array}\right)\quad \text{and}\quad w = \left(\begin{array}{r} 6 \\ -8 \\ 27 \end{array}\right). \] Are the given vectors linearly independent? Show your work. Explain your answer.



  5. Determine whether the following matrices are
    • [RREF] in reduced row echelon form,
    • [UREF] in row echelon form, but not in reduced row echelon form, or
    • [NOEF] neither in row echelon form or in reduced row echelon form.
    1. $ \left(\begin{array}{rrrr} 0& 1& 1& 1\\ 0& 0& 0& 1\\ 0& 0& 0& 0 \end{array}\right) $
    2. $ \left(\begin{array}{rrrr} 1& 0& 1& 1\\ 0& 1& 1& 1\\ 0& 0& 0& 0 \end{array}\right) $
    3. $ \left(\begin{array}{rrr} 1& 0& 1\\ 0& 1& 0\\ 0& 0& 0 \end{array}\right) $
    4. $ \left(\begin{array}{rrr} 1& 0& 0\\ 0& 0& 0\\ 0& 0& 1 \end{array}\right) $

  6. Let \[ A=\left(\begin{array}{rrrr} 3 & 12 & 3 & 11 \\ -6 & -24 & -11 & 1 \\ 9 & 36 & 4 & 64 \end{array}\right). \] Use Gaussian elimination to reduce the matrix $A$ to row echelon form. Show your work.

  7. Let \[ A=\left(\begin{array}{rrrr} 6 & -1 & -14 & -40 \\ -12 & 10 & 27 & 27 \\ 18 & -18 & -12 & -30 \end{array}\right). \] Use Gaussian elimination with partial pivoting to reduce the matrix $A$ to row echelon form. Show your work.

  8. Let \[ A=\left(\begin{array}{rrrrr} 4 & 3 & -14 & -7 & -2 \\ 3 & -2 & -2 & -1 & 4 \\ -3 & 1 & 4 & 2 & -2 \\ 5 & 2 & -14 & -7 & -3 \end{array}\right). \] Find the reduced row echelon form of $A$. Show your work.

  9. Let \[ A=\left(\begin{array}{rrrr} 9 & -7 & -7 & -4 \\ -1 & 4 & -3 & 6 \\ -4 & 3 & 3 & 3 \\ 7 & -6 & -7 & -6 \end{array}\right)\quad \text{and}\quad b=\left(\begin{array}{r} -5 \\ 33 \\ 3 \\ -7 \end{array}\right). \] Solve the equation $Ax=b$. Show your work.

  10. Let \[ A=\left(\begin{array}{rrr} -2 & 0 & 1 \\ -2 & -2 & -3 \\ 1 & 3 & -1 \\ -1 & -3 & 2 \end{array}\right)\quad \text{and}\quad b=\left(\begin{array}{r} -3 \\ 1 \\ -1 \\ -2 \end{array}\right). \] Solve the equation $Ax=b$ (showing your work) or explain why it doesn't have a solution.

  11. Let \[ A=\left(\begin{array}{rrr} -1 & 1 & 3 \\ -1 & -1 & -1 \\ 1 & -4 & 1 \\ 3 & -4 & -1 \\ 1 & -3 & 2 \end{array}\right)\quad \text{and}\quad b=\left(\begin{array}{r} 12 \\ -8 \\ 8 \\ 4 \\ 13 \end{array}\right). \] Solve the equation $Ax=b$ (showing your work) or explain why it doesn't have a solution.

  12. Let \[ A=\left(\begin{array}{rrrrrr} 5 & 5 & 20 & 30 & 0 & 1 \\ 2 & -2 & 12 & 8 & 4 & -2 \\ -5 & 4 & -29 & -21 & 4 & 0 \\ -2 & -4 & -6 & -14 & -3 & -2 \end{array}\right)\quad \text{and}\quad b=\left(\begin{array}{r} -75 \\ -30 \\ -29 \\ 70 \end{array}\right). \] Find the general solution of the equation $Ax=b$. Show your work.
    Hint: The augmented matrix $(A|b)$ has reduced row echelon form \[\left(\begin{array}{rrrrrr|r} 1 & 0 & 5 & 5 & 0 & 0 & -7 \\ 0 & 1 & -1 & 1 & 0 & 0 & -8 \\ 0 & 0 & 0 & 0 & 1 & 0 & -8 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right)\]

  13. Let \[ v=\left(\begin{array}{r} 5 \\ -4 \\ 8 \\ -1 \\ 0 \end{array}\right)\quad \text{and}\quad w = \left(\begin{array}{r} -7 \\ -7 \\ -3 \\ -2 \\ 2 \end{array}\right). \] Compute the sum $v+w$ if it is defined; otherwise, explain why it is not defined.

  14. Let \[ v=\left(\begin{array}{r} -6 \\ 9 \\ -1 \\ 2 \\ -4 \\ -7 \end{array}\right)\quad \text{and}\quad w = \left(\begin{array}{r} 2 \\ 2 \\ -8 \\ 0 \\ 7 \end{array}\right). \] Compute the sum $v+w$ if it is defined; otherwise, explain why it is not defined.

  15. Let \[ \alpha =-7,\quad \beta =5,\quad v=\left(\begin{array}{r} 2 \\ 9 \\ -1 \\ 7 \end{array}\right)\quad \text{and}\quad w = \left(\begin{array}{r} -1 \\ 7 \\ 6 \\ -1 \end{array}\right). \] Compute the linear combination $v \alpha + w \beta$ if it is defined (showing your work); otherwise explain why it is not defined.

Back to assignments or home page.
Krazy Kat is singing.