Matrix Factorizations

We are now done with the course and we have six factorizations. Three are used to solve linear systems while three are used to solve eigensystems.

Linear Systems: Ax = b

Given matrix $A_{m\times n}$ and vector $b_{m\times 1}$ find vectors $x_{n\times 1}$ that satisfy equation.

• A is invertible (most square matrices, i.e., m = n).

$$A = LDU$$

 $L_{m \times m}, U_{m \times m}$ triangular, $D_{m \times m}$ diagonal

• A has linearly independent columns (most matrices with $m \geq n$).

$$A = QDR$$

 $R_{n\times n}$ triangular, $D_{n\times n}$ diagonal, $Q_{m\times n}$ with $Q^TQD = I_{n\times n}$

• A is any matrix.

$$A = U\Sigma V^*$$
 (Full Singular Value Decomposition)

 $U_{m\times m}, V_{n\times n}$ unitary, $\Sigma_{m\times n}$ diagonal with non-negative entries

$$A = \hat{U}\hat{\Sigma}\hat{V}^*$$
 (Reduced Singular Value Decomposition)

$$\hat{U}_{m\times r}, \hat{V}_{n\times r} \text{ with } (\hat{U}^*)(\hat{U}) = (\hat{V}^*)(\hat{V}) = I_{r\times r}$$

 $\hat{\Sigma}_{r \times r}$ invertible, diagonal with non-negative entries

Eigen Systems: $Ax = x\lambda$

Given square matrix $A_{m \times m}$ find scalars λ and vectors $x_{m \times 1} \neq 0$ that satisfy equation.

• A is normal $(AA^* = A^*A)$.

$$A = UD U^*$$

 $U_{m \times m}$ unitary, $D_{m \times m}$ diagonal

• A is diagonalizable (most square matrices).

$$A = PDP^{-1}$$

 $P_{m \times m}$ invertible, $D_{m \times m}$ diagonal

• A is any square matrix.

$$A = UTU^*$$

 $U_{m \times m}$ unitary, $T_{m \times m}$ triangular