
Quicksort [Knuth]

Description

The basic idea of quicksort is to take one record, say R[1], and to move it to
the final position that it should occupy in the sorted file, say position s. While
determining this final position, we will also rearrange the other records so that
there will be none with greater keys to the left of position s, and none with
smaller keys to the right. Thus the file will have been partitioned in such a way
that the original sorting problem is reduced to two simpler problems, namely to
sort R[1] . . . R[s− 1] and (independently) to sort R[s + 1] . . . R[N ]. We can apply
the same technique to each of these subfiles, until the job is done.

We will achieve the above partitioning into left and right subfiles using a scheme
to to R. Sedgewick:

• Keep two pointers, i and j, with i = 2 and j = N initially.

• If R[i] is eventually supposed to be part of the left-hand subfile after par-
titioning (we can tell this by comparing K[i] with K[1]), increase i by 1,
and continue until encountering a record R[i] that belongs to the right-hand
subfile.

• Similarly, decrease j by 1 until encountering a record R[j] belonging to the
left-hand subfile.

• If i < j, exchange R[i] with R[j]; then move on to process the next records
in the same way, “burning the candle at both ends” until i ≥ j. At this
point exchange R[j] with R[1] to complete the partitioning.

The quicksort procedure was introduced (and named) by C.A.R. Hoare in 1962.

1



Example

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
l i jr

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
l i j r

503 087 154 061 908 170 897 275 653 426 512 509 612 677 765 703
l i j r

503 087 154 061 908 170 897 275 653 426 512 509 612 677 765 703
l i j r

503 087 154 061 426 170 897 275 653 908 512 509 612 677 765 703
l i j r

503 087 154 061 426 170 897 275 653 908 512 509 612 677 765 703
l i j r

503 087 154 061 426 170 275 897 653 908 512 509 612 677 765 703
l i j r

503 087 154 061 426 170 275 897 653 908 512 509 612 677 765 703
l j i r

(275 087 154 061 426 170) 503 (897 653 908 512 509 612 677 765 703)
l i jr

Now proceed as above with (R[1] . . . R[6]) and put (8, 16) on the stack for future
processing. (We put the longer subfile on the stack.)

Algorithm

Records R[1], . . . , R[N ] are rearranged in place; after sorting is complete their keys
will be in order K[1] ≤ · · · ≤ K[N ]. An auxiliary stack with at most blgNc entries
is needed for temporary storage. This algorithm follows the quicksort partitioning
procedure described above.

(a) We assume the presence of artificial keys K[0] = −∞ and K[N + 1] =∞ such
that

K[0] ≤ K[a] ≤ K[N + 1] for 1 ≤ a ≤ N.

(Equality is allowed.)

(b) Records with equal keys are exchanged, although it is not strictly necessary
to do so. (This idea, due to R. C. Singleton, keeps the inner loops fast and
helps to split subfiles nearly in half when equal elements are present.

2



Q1. [Initialize.] If N = 1, go to step Q9. Otherwise set the stack empty, and set
l = 1, r = N .

Q2. [Begin new stage.] (We now wish to sort the subfile R[l], . . . , R[r]; from the
nature of the algorithm, we have r ≥ l + 1, and K[l − 1] ≤ K[a] ≤ K[r + 1]
for l ≤ a ≤ r.) Set i = l, j = r + 1; and set k = K[l].

Q3. [Compare K[i] and k.] (At this point the file has been rearranged so that

K[a] ≤ k for l − 1 ≤ a ≤ i, k ≤ K[a] for j ≤ a ≤ r + 1 (1)

and l ≤ i < j.) Increase i by 1; then if K[i] < k, repeat this step. (Since
K[j] ≥ k, the iteration must terminate with i ≤ j.)

Q4. [Compare k and K[j].] Decrease j by 1; then if k < K[j], repeat this step.
(Since k ≥ K[i− 1], the iteration must terminate with j ≥ i− 1.)

Q5. [Test i and j] (At this point (1) holds except for a = i and a = j; also
K[i] ≥ k ≥ K[j], and r ≥ j ≥ i− 1 ≥ l.) If j ≤ i, interchange R[l] and R[j]
and go to step Q7.

Q6. [Exchange.] Interchange R[i] and R[j] and go back to step Q3.

Q7. [Put on stack.] (Now the subfile R[l] . . . R[j] . . . R[r] has been partitioned so
that K[a] ≤ K[j] for i− 1 ≤ a ≤ j and k[j] ≤ K[a] for j ≤ a ≤ r + 1. (Each
entry (a, b) on the stack is a request to sort the subfile R[a] . . . R[b] at some
future time.)

– If r − j ≥ j − l > 1, insert (j + 1, r) on top of the stack, set r = j − 1,
and go to Q2.

– If j − l > r − j > 1, insert (l, j − 1) on top of the stack, set l = j + 1,
and go to Q2.

– Otherwise

∗ If r − j > 1 ≥ j − l, set l = j + 1 and go to Q2; or

∗ if j − l > 1 ≥ r − j, set r = j − 1 and go to Q2.

Q8. [Take off stack.] If the stack is nonempty, remove its top entry (a, b), set
l = a, r = b, and return to Q2.

By the way, how did we get here at Q8?

Q9. [End.] Return R.

3


