Methods

We have two methods for finding the least squares solution to a (presumably inconsistent) linear system Ax = b. Here we assume A is $m \times n$ with $m \ge n$. Also, A is assumed to have linearly independent columns.

(Method I) Normal Equations

Operation		Flops
Compute Compute Solve	$\begin{aligned} A^T A \\ A^T b \\ (A^T A)x &= A^T b \end{aligned}$	${mn^2 \atop mn \atop n^3}$

(Method II) QDR Factorization

Operation		Flops
Factor Compute Solve	$A = QDR$ $Q^T b$ $Rx = Q^T b$	$ \begin{array}{c} mn^2 \\ mn \\ n^2 \end{array} $

If both of n and $\kappa(A)$ are "relatively small", then the methods are interchangeable. Otherwise the QDR factorization method is the preferred method, either for efficiency or accuracy reasons. Possibly both.

There is one caveat: I've ignored the coefficients in the *flops* estimates, and these can have an effect on the efficiency.