MA exam: Algebra

Do two problems from each of the three sections. Give complete proofs — do not just quote a theorem. Please indicate clearly which six problems you want graded.

Part I: Group theory

- 1. If G is a group and H is a subgroup of G of index n, show that G contains a normal subgroup K whose index in G divides n!.
- **2.** (a) If G is a group which contains only a finite number or subgroups, show that G is finite.
 - (b) Describe all groups G which containing no proper subgroups.
 - (c) Describe all groups G which contain exactly one proper non-trivial subgroup.
- **3.** Let G be a finite p-group and let H be a normal subgroup of G of order p. Show that H is contained in the center of G.

Part II: Ring theory

- 4. Let \mathbb{Z}_3 be the field with 3 elements. Find all monic irreducible polynomials of degree 3 in the ring $\mathbb{Z}_3[x]$.
- 5. Let \mathbb{Z} be the ring of integers, p a prime in \mathbb{Z} , and \mathbb{Z}_p , the field of p elements. Let x be an indeterminate, and set

$$R_1 = \mathbb{Z}_p[x]/(x^2 - 2), \qquad R_2 = \mathbb{Z}_p[x]/(x^2 - 3).$$

Determine whether the rings R_1 and R_2 are isomorphic in each of the following cases: p = 2, 5, 11.

6. Let \mathbb{F} be field, and let *R* be the subset of 2×2 matrices over \mathbb{F} which commute with the matrix

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

- (a) Prove the R is a commutative ring.
- (b) Prove that $R \cong \mathbb{F}[x]/I$, where I is the ideal of $\mathbb{F}[x]$ generated by x^2 .

Part III: Linear algebra

7. Consider the 4×4 real matrix

$$A = \begin{pmatrix} 2 & 1 & -1 & 2 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

- (a) Find J, the Jordan canonical form of A.
- (b) Find an invertible matrix P so that AP = PJ.

- 8. (a) Let V and W be vector spaces over a field \mathbb{F} , and let T be a lineard operator from V into W. Suppose that V is finite-dimensional. Prove $\operatorname{rank}(T) + \operatorname{nullity}(T) = \dim(V)$.
 - (b) Let S be the linear operator defined on the space of 3×3 real matrices given by

$$S(A) = A - A^t,$$

where A^t denotes the transpose of the matrix A. Determine rank(S).

9. Let A be a 3×3 matrix over the field \mathbb{R} of real numbers and suppose that $\operatorname{tr}(A) = 6$, $\operatorname{tr}(A^2) = 14$ and $\det(A) = 6$. Here $\operatorname{tr}(A)$ and $\det(A)$ denote the trace and determinant of A. Prove that A is similar to the diagonal matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

•