Topology II HW 1 Due: Jan. 25

- (a) Suppose F is a continuous map from a compact space to a Hausdorff space. Prove that F is a homeomorphism if F is bijective.
 (b) Let R^{2*} be the compactification of R². Give an example of open set in R^{2*} that is not in R².
 (c) Prove that R^{2*} is homeomorphic to S².
- 2. Let $F: X \mapsto Y$ be a continuous and open map. Suppose X and Y are both compact and connected. Prove that F must be surjective.
- 3. Let K be a l-simplex in Euclidean space. Prove that $\chi(K) = 1$. Hint: Find the number of k simplex for $k \leq l$ and use binomial Theorem.
- 4. Compute the Euler Characteristic of the Möbius band and the torus using Figure 5.7 on p105 and Figure 5.13 on page 115. (You only count distinct vertices, edges and faces).