Topology I HW 2 Due: Sep. 9

- 1. Let (X, d) be a metric space and let $A \subset X$. If $x \in X$ define the distance of x to A to be inf $\{d(x, a) : a \in A\}$. Prove that the real-valued function on X defined by $x \mapsto d(x, A)$ is continuous.
- 2. Prove the followings:
 - (a) Show that every local homeomorphism is an open map.
 - (b) Show that every homeomorphism is a local homeomorphism.
 - (c) Show that a bijective continuous open map is a homeomorphism.
 - (d) Show that a bijective local homeomorphism is a homeomorphism.

3. Prove the followings:

Let X be a topological space and $A \subset X$ any subset.

(a) A point $q \in int A$ iff q has a neighborhood contained in A.

(b) A point $q \in ext A$ iff q has a neighborhood contained in $X \setminus A$.

(c) A point $q \in \partial$ A iff every neighborhood of q contains both a point of A and a point of $X \setminus A$.

(d) Int A and Ext A are open in X, while \overline{A} is closed in X.

(e) A is open iff A = IntA,

(f) A is closed iff it contains all its boundary points, which is true if and only if $A = IntA \cup \overline{A} = \overline{A}$.

 $(g) \ \overline{A} = A \cup \partial A = Int \ A \cup \partial A.$

(h) A set A in a topological space is closed iff it contains all of its limit points.

- 4. Prove that if B is a closed subset of X such that $A \subset B$ then $\overline{A} \subset B$.
- 5. Do 2-2, 2-3, 2-5 (on p36).