Finding the limit of a function

Mao-Pei Tsui

- $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x-1}$

Plugging 1 to the expression, we get $\frac{1-3+2}{1-1}=\frac{3-3}{1-1}=\frac{0}{0}$.

This means that we can not determine the limit just by plugging in the number 1 .

In this case, we can factor $x^{2}-3 x+2=(x-1)(x-2)$.
to get $\frac{x^{2}-3 x+2}{x-1}=\frac{(x-1)(x-2)}{x-1}=x-2$.

So $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x-1}=\lim _{x \rightarrow 1} x-2=1-2=-1$.

- $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}$

Plugging 1 to the expression, we get $\frac{\sqrt{1+3}-2}{1-1}=\frac{2-2}{1-1}=\frac{0}{0}$. This means that we can not determine the limit just by plugging in the number 1 .

In this case, we need to rationalize the expression by multiplying $\sqrt{x+3}+2$ to the top and the bottom to get

$$
\begin{aligned}
& \frac{\sqrt{x+3}-2}{x-1}=\frac{\sqrt{x+3}-2}{x-1} \cdot \frac{\sqrt{x+3}+2}{\sqrt{x+3}+2}=\frac{(\sqrt{x+3})^{2}-2^{2}}{(x-1)(\sqrt{x+3}+2)}=\frac{(x+3)-4}{(x-1)(\sqrt{x+3}+2)} \\
& =\frac{x-1}{(x-1)(\sqrt{x+3}+2)}=\frac{\underbrace{(x-1)}}{\underbrace{(x-1)}(\sqrt{x+3}+2)}=\frac{1}{(\sqrt{x+3}+2)}
\end{aligned}
$$

So $\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}=\lim _{x \rightarrow 1} \frac{1}{(\sqrt{x+3}+2)}=\frac{1}{\sqrt{1+3}+2}=\frac{1}{4}$.

- $\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}-2}{x-1}$

Plugging 1 to the expression, we get $\frac{\sqrt{1+3}-2}{1-1}=\frac{2-2}{1-1}=\frac{0}{0}$. This means that we can not determine the limit just by plugging in the number 1 .
In this case, we need to rationalize the expression by multiplying $\sqrt{x^{2}+3}+2$ to the top and the bottom
to get $\frac{\sqrt{x^{2}+3}-2}{x-1}=\frac{\sqrt{x^{2}+3}-2}{x-1} \cdot \frac{\sqrt{x^{2}+3}+2}{\sqrt{x^{2}+3}+2}=\frac{\left(\sqrt{x^{2}+3}\right)^{2}-2^{2}}{(x-1)\left(\sqrt{x^{2}+3}+2\right)}=$

$$
\frac{\left(x^{2}+3\right)-4}{(x-1)\left(\sqrt{x^{2}+3}+2\right)}
$$

$$
=\frac{x^{2}-1}{(x-1)\left(\sqrt{x^{2}+3}+2\right)}=\frac{\underbrace{(x-1)}(x+1)}{\underbrace{(x-1)}\left(\sqrt{x^{2}+3}+2\right)}=\frac{(x+1)}{\left(\sqrt{x^{2}+3}+2\right)} \text {. }
$$

So $\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}-2}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)}{\left(\sqrt{x^{2}+3}+2\right)}=\frac{1+1}{\sqrt{1+3}+2}=\frac{2}{4}=\frac{1}{2}$.

- $\lim _{x \rightarrow 1} \frac{\frac{1}{x+1}-\frac{1}{2}}{x-1}$

Plugging 1 to the expression, we get $\frac{\frac{1}{1+1}-\frac{1}{2}}{1-1}=\frac{0}{0}$.

This means that we can not determine the limit just by plugging in the number 1 . In this case, we need to simplify the expression
to get $\frac{\frac{1}{x+1}-\frac{1}{2}}{x-1}=\frac{\frac{2-(x+1)}{2(x+1)}}{x-1}=\frac{\frac{2-x-1}{2(x+1)}}{x-1}=\frac{\underbrace{1-x}}{2(x+1) \underbrace{(x-1)}}$
$=\frac{-1}{2(x+1)}$.
So $\lim _{x \rightarrow 1} \frac{\frac{1}{x+1}-\frac{1}{2}}{x-1}=\lim _{x \rightarrow 1} \frac{-1}{2(x+1)}=-\frac{1}{4}$.

Review of simple algebra:
$a-(b+c)=a-b-c$
$\frac{\frac{a}{c}}{\frac{b}{d}}=\frac{a \cdot d}{b \cdot c}$
$\frac{\partial}{c}=\frac{a}{b \cdot c}$.
Example. $f(x)=-x^{2}-3 x+3$. Find $\frac{f(-2+h)-f(-2)}{h}$.
Solution: First, notice that $f(\square)=-\square^{2}-3 \square+3$. So $f(-2+h)=-(-2+h)^{2}-3(-2+h)+3=$ $-\left(4-4 h+h^{2}\right)+6-3 h+3=-4+4 h-h^{2}+6-3 h+3=5+h-h^{2}$ and $f(-2)=-(-2)^{2}-3(-2)+3=-4+6+3=5$.

Hence $\frac{f(-2+h)-f(-2)}{h}=\frac{5+h-h^{2}-5}{h}=\frac{h-h^{2}}{h}=\frac{h(1-h)}{h}=1-h$.

- $\lim _{x \rightarrow 1} \frac{\frac{1}{x^{2}+1}-\frac{1}{2}}{x-1}$

Plugging 1 to the expression, we get $\frac{\frac{1}{1+1}-\frac{1}{2}}{1-1}=\frac{0}{0}$.

This means that we can not determine the limit just by plugging in the number 1.
In this case, we need to simplify the expression
to get $\frac{\frac{1}{x^{2}+1}-\frac{1}{2}}{x-1}=\frac{\frac{2-\left(x^{2}+1\right)}{2\left(x^{2}+1\right)}}{x-1}=\frac{\frac{2-x^{2}-1}{2\left(x^{2}+1\right)}}{x-1}=\frac{\underbrace{1-x^{2}}}{2\left(x^{2}+1\right) \underbrace{(x-1)}}$
$=\frac{\underbrace{(1-x)}(1+x)}{2\left(x^{2}+1\right) \underbrace{(x-1)}}=\frac{-1 \cdot(1+x)}{2\left(x^{2}+1\right)}$.
So $\lim _{x \rightarrow 1} \frac{\frac{1}{x^{2}+1}-\frac{1}{2}}{x-1}=\lim _{x \rightarrow 1} \frac{-(1+x)}{2\left(x^{2}+1\right)}=-\frac{2}{4}=-\frac{1}{2}$.

