Differentiation rules

Mao-Pei Tsui

September 26, 2010

Today's topics:

• Derivation of product rule (uv)' = u'v + uv'

Practice differentiation rules

Product rule

Goal: To prove the product rule (u(x)v(x))' = u'(x)v(x) + u(x)v'(x).

• Let
$$f(x) = u(x)v(x)$$
.

We want to find the derivative of f(x).

From the definition of the derivative, we have $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.

Since f(x) = u(x)v(x), we have f(x + h) = u(x + h)v(x + h)

and f(x + h) - f(x) = u(x + h)v(x + h) - u(x)v(x).

Now we express the change of f in terms of the changes of u and v.

$$f(x+h)-f(x)$$

$$= u(x+h)v(x+h) - u(x)v(x)$$

$$= u(x+h)v(x+h)\underbrace{-u(x)v(x+h)+u(x)v(x+h)}_{=0} - u(x)v(x)$$

(we add the term -u(x)v(x+h) + u(x)v(x+h) which is 0.)

$$= \left(u(x+h)-u(x)\right)v(x+h)+u(x)\left(v(x+h)-v(x)\right)$$

(We group the first two terms and the last two terms together.)

• Now divide by h and let $h \rightarrow 0$:

$$lim_{h\to 0} \frac{f(x+h) - f(x)}{h}$$

$$=\lim_{h\to 0}\frac{\left(u(x+h)-u(x)\right)v(x+h)+u(x)\left(v(x+h)-v(x)\right)v(x)}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} v(x+h) + u(x) \frac{v(x+h) - v(x)}{h}$$

(use the limit properties) $= \left(\lim_{h \to 0} \frac{u(x+h) - u(x)}{h}\right) \left(\lim_{h \to 0} v(x+h)\right)$ $+ u(x) \left(\lim_{h \to 0} \frac{v(x+h) - v(x)}{h}\right)$

$$= u'(x)v(x) + u(x)v'(x),$$

as claimed. In this last step we have used that

$$\lim_{h \to 0} \frac{u(x+h)-u(x)}{h} = u'(x) \quad \text{and} \quad \lim_{h \to 0} \frac{v(x+h)-v(x)}{h} = v'(x)$$

and also that $\lim_{h\to 0} v(x+h) = v(x)$.

This last limit follows from the fact that v is continuous, which in turn follows from the fact that v is differentiable. The following is the proof.

$$\lim_{h \to 0} v(x+h) - v(x)$$

$$= \lim_{h \to 0} h\left(\frac{v(x+h) - v(x)}{h}\right)$$

$$= \lim_{h \to 0} h \lim_{h \to 0} \frac{v(x+h) - v(x)}{h}$$

$$= 0 \cdot f'(x)$$

$$= 0$$

Thus $\lim_{h\to 0} v(x+h) - v(x) = 0$ which is the same as $\lim_{h\to 0} v(x+h) = v(x)$.

Constant rule:	c'=0	$rac{dc}{dx} = 0$
Power rule rule:	$(cx^a)' = c \cdot a \cdot x^{a-1}$	$\frac{d}{dx}(cx^a) = c \cdot a \cdot x^{a-1}$
Sum rule:	$(u\pm v)'=u'\pm v'$	$\frac{d}{dx}(u\pm v)=\frac{du}{dx}\pm\frac{dv}{dx}$
Product rule:	$(u \cdot v)' = u' \cdot v + u \cdot v'$	$\frac{d}{dx}(uv) = \frac{du}{dx}v + u\frac{dv}{dx}$
Quotient rule:	$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$	$\frac{d}{dx}(\frac{u}{v}) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

Table: The differentiation rules

Practice differentiation rules

- Open the file by clicking Z:/Math/Math1850/M4C13/ MapletsForCalculus/MapletsForCalculus/files/ maplets/DerivativeDrill.maplet
- ▶ We will use this Maplet to practice differentiation rules.
- ▶ First, click on "Functions" to choose only Polynomials.
- ▶ Now click on "Rules" to choose "Product Rules".
- Now click on "New Derivative function".
- When you type your answer, you don't have to simplify your answer. For example, if the problem is $\frac{d}{dt}((-2t^3 + 2t + 1)(3t^2 4t + 1)).$ You should type $(-6*t^{2}+2)*(3*t^{2}-4*t+1)+(-2*t^{3}+2*t+1)*(6*t-4))$ as your answer.
- Now do 10 problems.
- I or TA will give you a quiz when you are done.

Picture of the Product Rule. If u and v are quantities which depend on x, and if increasing x by Δx causes u and v to change by Δu and Δv , then the product of u and v will change by

$$\Delta(uv) = (u + \Delta u)(v + \Delta v) - uv = u\Delta v + v\Delta u + \Delta u\Delta v. \quad (0.0.1)$$

If u and v are differentiable functions of x, then the changes Δu and Δv will be of the same order of magnitude as Δx , and thus one expects $\Delta u \Delta v$ to be much smaller. One therefore ignores the last term in (0.0.1), and thus arrives at

$$\Delta(uv)=u\Delta v+v\Delta u.$$

Leibniz would now divide by Δx and replace Δ 's by d's to get the product rule:

$$\frac{\Delta(uv)}{\Delta x} = u \frac{\Delta v}{\Delta x} + v \frac{\Delta u}{\Delta x}.$$

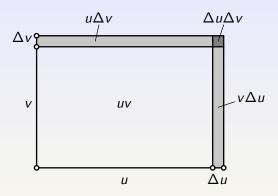


Figure: The Product Rule. How much does the area of a rectangle change if its sides u and v are increased by Δu and Δv ? Most of the increase is accounted for by the two thin rectangles whose areas are $u\Delta v$ and $v\Delta u$. So the increase in area is approximately $u\Delta v + v\Delta u$, which explains why the product rule says (uv)' = uv' + vu'.