Review Problems for Midterm II

Midterm II: Monday, October 18 in class

Topics: 3.1-3.7 (except 3.4)

1. Use the definition of derivative $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to find the derivative of the functions.
(a) $f(x)=\sqrt{2 x+3}$
(b) $f(x)=\frac{1}{2 x+3}$.
2. Find the derivative of the following functions and simplify your answers.
(a) $12 x^{5}-\frac{3}{7 x^{2}}+4 x^{\frac{-2}{5}}$
(b) $(1+4 x) e^{-4 x}$
(c) $(\sec (x)+\tan (x))^{3}$
(d) $x^{5} \cos (x)-6 x \sin (x)-6 \cos (x)$
(e) $\left(\frac{\cos (x)}{1+\sin (x)}\right)^{5}$
3. Find the derivative of the following functions. You don't have to simplify your answer.
(a) $(2 x+1)^{3}\left(1+e^{2 x}\right)^{5}$
(b) $\frac{(2 x+1)^{3}}{\left(1+e^{2 x}\right)^{5}}$
(c) $\tan \left(\sin \left(x e^{x}\right)\right)$
(d) $\cot ^{6}\left(\frac{2}{t}\right)$
(e) $\frac{7}{\sqrt[4]{x^{2}+e^{x^{2}}}}$
(g) $\sin ^{3}(2 t) \cos ^{3}(2 t)$
(h) $x^{3} \tan ^{3}\left(\left(1+x^{2}\right)^{2}\right)$
(i) $\frac{e^{x^{2} \csc (3 x)-x^{2}}}{\left(1+x^{2}\right)^{2}}$
(j) $x^{4} e^{-3 x} \cos (5 x)$
(k) $\frac{\sin ^{-5}(2 x)}{x}-\frac{x \cos ^{3}(2 x)}{3}$
(l) $\sqrt{1+t \cos \left(t^{2}\right)-\frac{2 t^{3}}{3} \sin \left(t^{2}\right)}$
4. Find the first derivative (y^{\prime}) and second derivative ($y^{\prime \prime}$) of the following functions.
(a) $y=\left(6+\frac{4}{x}\right)^{5}$
(b) $y=x^{3} e^{3 x}$
5. Use implicit differentiation to find $\frac{d y}{d x}$.
(a) $2 x y-y^{2}=x$
(b) $x^{3}+3 x^{2} y+y^{3}=8$
(c) $\frac{x+y}{x-y}=x^{2}+y^{2}$
(d) $\cos (x y)+x^{5}=y^{5}$
(e) $e^{x y}=\sin (x+5 y)$
6. Show that $(1,2)$ lie on the curve $2 x^{3}+2 y^{3}-9 x y=0$. Then find the the tangent and normal to the curve at $(1,2)$.
7. Find the normal to the curve $x y+2 x-y=0$ that are parallel to the line $x+2 y=0$.
