Solution to Review Problems for Midterm \#1

Midterm I: Wednesday, September 22 in class
 Topics: 1.1, 1.3 and 2.1-2.6 (except 2.3)
 Office hours before the exam: Monday 11-1 and 4-6 p.m., Tuesday 1-2 pm and 4-6 pm at UH 2080B)

Topics1 Find the equation of the tangent line to $y=f(x)$ at $x=a$,

1. We need to find the slope of the tangent line by finding the limit $m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
2. Use the point slope formula to find the equation of the tangent line thru ($a, f(a)$) with slope m :
$y-f(a)=m(x-a)$.
3. Let $f(x)=-2 x^{2}+3 x+1$. Find an equation of the tangent line to the curve at $P(1, f(1))$.
Solution: To find the slope of the tangent line at $x=1$, we need to find the limit $m=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$. Since $f(\square)=-2 \square^{2}+3 \square+1$, we have $f(1+h)=-2(1+h)^{2}+\underbrace{3(1+h)+1}=-2\left(1+2 h+h^{2}\right)+\underbrace{3+3 h+1}=$ $-2-4 h-2 h^{2}+\underbrace{4+3 h}=2-h-2 h^{2}, f(1)=-2+3+1=2$ and $f(1+h)-f(1)=2-h-2 h^{2}-2=-h-2 h^{2}=h(-1-2 h)$. So $m=$ $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{h(-1-2 h)}{h}=\lim _{h \rightarrow 0}-1-2 h=-1$. Now we have the point $P=(1, f(1))=(1,2)$ and the slope of the tangent line $m=-1$. By the point slope formula, we have the equation of the tangent line $y-2=-1(x-1)=-x+1$ and $y=-x+1+2=-x+3$. Hence the equation of the tangent line to the curve at $P(1, f(1))$ is $y=-x+3$.
4. Let $f(x)=\frac{2}{x^{2}+1}$. Find an equation of the tangent line to the curve at $P(1, f(1))$.
Solution: To find the slope of the tangent line at $x=1$, we need to find the limit $m=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$. Since $f(\square)=\frac{2}{\square^{2}+1}$, we have $f(1+h)=\frac{2}{(1+h)^{2}+1}=\frac{2}{\left(1+2 h+h^{2}\right)+1}=\frac{2}{2+2 h+h^{2}}, f(1)=\frac{2}{1^{2}+1}=\frac{2}{2}=1$ and $f(1+h)-f(1)=\frac{2}{2+2 h+h^{2}}-1=\frac{2}{2+2 h+h^{2}}-\frac{\mathbf{2}+\mathbf{2} \mathbf{h}+\mathbf{h}^{2}}{2+2 h+h^{2}}=\frac{2-\left(\mathbf{2}+\mathbf{2 h}+\mathbf{h}^{2}\right)}{2+2 h+h^{2}}=\frac{2-2-2 h-h^{2}}{2+2 h+h^{2}}=$ $\frac{-2 h-h^{2}}{2+2 h+h^{2}}=\frac{h(-2-h)}{2+2 h+h^{2}}$. So $m=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h(-2-h)}{2+2 h+h^{2}}}{h}=\lim _{h \rightarrow 0} \frac{h(-2-h)}{\left(2+2 h+h^{2}\right) h}=$ $\lim _{h \rightarrow 0} \frac{(-2-h)}{\left(2+2 h+h^{2}\right)}=\frac{-2-0}{2+0+0}=-1$. Now we have the point $P=(1, f(1))=$ $(1,1)$ and the slope of the tangent line $m=-1$. By the point slope formula, we have the equation of the tangent line $y-1=-1(x-1)=-x+1$ and $y=-x+1+1=-x+2$. Hence the equation of the tangent line to the curve at $P(1, f(1))$ is $y=-x+2$.
5. Let $f(x)=\frac{2}{\sqrt{x^{2}+3}}$. Find an equation of the tangent line to the curve at $P(1, f(1))$.
Solution: To find the slope of the tangent line at $x=1$, we need to find the limit $m=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$. Since $f(\square)=\frac{2}{\sqrt{\square^{2}+3}}$, we have $f(1+h)=\frac{2}{\sqrt{(1+h)^{2}+3}}=\frac{2}{\sqrt{\left(1+2 h+h^{2}\right)+3}}=\frac{2}{\sqrt{4+2 h+h^{2}}}, f(1)=\frac{2}{\sqrt{1^{2}+3}}=\frac{2}{2}=1$ and $f(1+h)-f(1)=\frac{2}{\sqrt{4+2 h+h^{2}}}-1=\frac{2}{\sqrt{4+2 h+h^{2}}}-\frac{\sqrt{4+2 h+h^{2}}}{\sqrt{4+2 h+h^{2}}}=\frac{2-\sqrt{4+2 h+h^{2}}}{\sqrt{4+2 h+h^{2}}}$. Now we rationalize the expression by multiplying $\frac{2+\sqrt{4+2 h+h^{2}}}{2+\sqrt{4+2 h+h^{2}}}$ to get
$f(1+h)-f(1)=\frac{2-\sqrt{4+2 h+h^{2}}}{\sqrt{4+2 h+h^{2}}} \frac{2+\sqrt{4+2 h+h^{2}}}{2+\sqrt{4+2 h+h^{2}}}=\frac{2^{2}-\left(4+2 h+h^{2}\right)}{\left(\sqrt{4+2 h+h^{2}}\right)\left(2+\sqrt{4+2 h+h^{2}}\right)}$
$=\frac{\left.4-4-2 h-h^{2}\right)}{\left(\sqrt{4+2 h+h^{2}}\right)\left(2+\sqrt{4+2 h+h^{2}}\right)}=\frac{\left.-2 h-h^{2}\right)}{\left(\sqrt{4+2 h+h^{2}}\right)\left(2+\sqrt{4+2 h+h^{2}}\right)}$.
So $m=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\frac{\left.-2 h-h^{2}\right)}{\left(\sqrt{4+2 h+h^{2}}\right)\left(h^{2} \sqrt{4+2 h+h^{2}}\right)}}{h}$
$=\lim _{h \rightarrow 0} \frac{h(-2-h))}{\left(\sqrt{4+2 h+h^{2}}\right)\left(2+\sqrt{4+2 h+h^{2}}\right) h}$ (factoring out h from the top and the bottom $)=\lim _{h \rightarrow 0} \frac{(-2-h)}{\left(\sqrt{4+2 h+h^{2}}\right)\left(2+\sqrt{4+2 h+h^{2}}\right)}=\frac{-2-0}{\sqrt{4} \cdot(2+\sqrt{4})}=\frac{-2}{2 \cdot 4}=-\frac{1}{4}$. Now we have the point $P=(1, f(1))=(1,1)$ and the slope of the tangent line $m=-\frac{1}{4}$. By the point slope formula, we have the equation of the tangent line $y-1=-\frac{1}{4}(x-1)=-\frac{1}{4} x+\frac{1}{4}$ and $y=-\frac{1}{4} x+\frac{1}{4}+1=-\frac{x}{4}+\frac{5}{4}$. Hence the equation of the tangent line to the curve at $P(1, f(1))$ is $y=-\frac{x}{4}+\frac{5}{4}$.

Topic2 Left continuity: To determine if a function is left continuous at $x=a$, we need to find $\lim _{x \rightarrow a^{-}} f(x)$ and $f(a)$. If $\lim _{x \rightarrow a^{-}} f(x) \neq f(a)$ then f is not left continuous. If $\lim _{x \rightarrow a^{-}} f(x)=f(a)$ then f is left continuous. Right continuity at $x=a$: To determine if a function is right continuous at $x=a$, we need to find $\lim _{x \rightarrow a^{+}} f(x)$ and $f(a)$. If $\lim _{x \rightarrow a^{+}} f(x) \neq f(a)$ then f is not left continuous. If $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ then f is left continuous. Continuity at $x=a$:To determine if a function is t con-
tinuous at $x=a$, we need to find $\lim _{x \rightarrow a^{-}} f(x), \lim _{x \rightarrow a^{+}} f(x)$ and $f(a)$. If $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$ then f is not continuous. (either jump or infinite discontinuity). If $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x) \neq f(a)$ then f is not continuous. (This is called the removable discontinuity.) If $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$ then f is continuous.
4. A piecewise defined function is given by

$$
f(x)=\left\{\begin{aligned}
-x-1, & x<-1 \\
x^{2}-1, & -1 \leq x<2 \\
x+2, & 2 \leq x
\end{aligned}\right.
$$

Determine if f is left continuous, right continuous or continuous at $x=-1$ or $x=2$.
Solution: At $x=-1$, we have $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}-x-1=1-1=0$, $\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} x^{2}-1=(-1)^{2}-1=0$ and $f(1)=1^{2}-1=0$. So $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$. Hence f is left continuous, right continuous and continuous at $x=-1$.
At $x=2$, we have $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x^{2}-1=4-1=3, \lim _{x \rightarrow 2^{+}} f(x)=$ $\lim _{x \rightarrow 2^{+}} x+2=2+2=4$ and $f(2)=2+2=4$. So $\lim _{x \rightarrow 2^{-}} f(x) \neq f(2)$ and f is not left continuous at $x=2$. Now $\lim _{x \rightarrow 2^{+}} f(x)=f(2)$ and f is right continuous $x=2$.
But $\lim _{x \rightarrow 2^{-}} f(x)=3 \neq 4=\lim _{x \rightarrow 2^{+}} f(x)$ and f has a jump discontinuity at $x=2$.
5. Classify the discontinuity of the following functions (removable, infinite, jump or oscillating discontinuity). Redefine the value of the function if it's removable.
(a) $f(x)=\frac{x-3}{x^{2}-4 x+3}$

Solution: Note that $x^{2}-4 x+3=(x-1)(x-3)$. The domain of f is $\{x \mid x \neq 1$ and $x \neq 3\}$. So f is discontinuous at $x=1$ and $x=3$. At $x=1, \lim _{x \rightarrow 1^{-}} \frac{x-3}{x^{2}-4 x+3}=\lim _{x \rightarrow 1^{-}} \frac{x-3}{(x-1)(x-3)}=\lim _{x \rightarrow 1^{-}} \frac{1}{(x-1)}=\frac{1}{0^{-}}=-\infty$ and $\lim _{x \rightarrow 1^{+}} \frac{x-3}{x^{2}-4 x+3}==\lim _{x \rightarrow 1^{+}} \frac{1}{(x-1)}=\frac{1}{0^{+}}=\infty$. So f has an infinite discontinuity at $x=1$.
At $x=3, \lim _{x \rightarrow 3^{-}} \frac{x-3}{x^{2}-4 x+3}=\lim _{x \rightarrow 3^{-}} \frac{1}{(x-1)}=\frac{1}{2}$ and $\lim _{x \rightarrow 3^{+}} \frac{x-3}{x^{2}-4 x+3}=$ $\lim _{x \rightarrow 3^{+}} \frac{1}{(x-1)}=\frac{1}{2}$. So f has an removable discontinuity at $x=3$. We can define $f(3)=\frac{1}{2}$ to make f continuous at $x=3$.
(b)

$$
f(x)=\left\{\begin{array}{cl}
\frac{x+1}{x^{2}-1}, & x<-1 \\
\frac{x+1}{8}, & -1 \leq x \leq 1 \\
\frac{\sqrt{x}-1}{x^{2}-1}, & 1<x
\end{array}\right.
$$

Solution: The only points where f may not be continuous is $x=-1$ and $x=1$.

At $x=-1, \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} \frac{x+1}{x^{2}-1}=\lim _{x \rightarrow-1^{-}} \frac{x+1}{(x+1)(x-1)}=\lim _{x \rightarrow-1^{-}} \frac{1}{x-1}=$ $-\frac{1}{2}, \lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} \frac{x+1}{8}=0$ and $f(-1)=\frac{-1+1}{8}=0$. Hence $\lim _{x \rightarrow-1^{-}} f(x) \neq f(-1)$ and f is not left continuous at $x=-1$ Now $\lim _{x \rightarrow-1^{+}} f(x)=f(-1)$ and f is right continuous at $x=-1$. Since $\lim _{x \rightarrow-1^{-}} f(x)=-\frac{1}{2} \neq 0=\lim _{x \rightarrow-1^{+}} f(x)$ and f has a jump discontinuity at $x=-1$.
At $x=1, \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x+1}{8}=\frac{2}{8}=\frac{1}{4}, \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{\sqrt{x}-1}{x^{2}-1}=$ $\lim _{x \rightarrow 1^{+}} \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\left(x^{2}-1\right)(\sqrt{x}+1)}$
$=\lim _{x \rightarrow 1^{+}} \frac{x-1}{\left(x^{2}-1\right)(\sqrt{x}+1)}=\lim _{x \rightarrow 1^{+}} \frac{x-1}{(x-1)(x+1)(\sqrt{x}+1)}=\lim _{x \rightarrow 1^{+}} \frac{1}{(x+1)(\sqrt{x}+1)}=\frac{1}{4}$ and $f(1)=\frac{1+1}{8}=\frac{1}{4}$. Since $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=f(1)$ and f has is left continuous, right continuous and continuous at $x=1$.
6. A piecewise defined function is given by

$$
f(x)=\left\{\begin{aligned}
x-1, & x<-1 \\
a x+b, & -1 \leq x<1 \\
x^{2}, & 1 \leq x
\end{aligned}\right.
$$

(a) Find the graph of $y=f(x)$ over the interval $(-\infty,-1) \cup[1, \infty)$.
(b) Determine the value of a and b so that f is continuous everywhere. Also explain your answer geometrically.
Solution: The only possible discontinuity are at $x=-1$ and $x=1$. We first compute $\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} x-1=-1-1=-2$, $\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} a x+b=-a+b$ and $f(-1)=-a+b$ То make f continuous at $x=-1$, we must have $\lim _{x \rightarrow-1^{-}} f(x)=$ $\lim _{x \rightarrow-1^{+}} f(x)=f(-1)$. This gives $-a+b=-2$.
Next we compute $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} a x+b=a+b, \lim _{x \rightarrow 1^{+}} f(x)=$ $\lim _{x \rightarrow 1^{+}} x^{2}=1$ and $f(1)=1$ To make f continuous at $x=1$, we must have $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=f(1)$. This gives $a+b=1$. Now we have two equations $-a+b=-2$ and $a+b=1$. From $-a+b=-2$, we get $b=-2+a$. Plugging $b=-2+a$ to $a+b=1$, we get $a+(-2+a)=1,2 a=3$ and $a=\frac{3}{2}$. Use $b=-2+a$ to get $b=-2+\frac{3}{2}=-\frac{1}{2}$. Thus $a=\frac{3}{2}$ and $b=-\frac{1}{2}$ will make f continuous everywhere.

Topic 3: Vertical asymptote and horizontal asymptote. To find vertical asymptote, we first find its domain. Let a be a point not in the domain. We find $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{=}} f(x)$. If $\lim _{x \rightarrow a^{-}} f(x)=\infty, \lim _{x \rightarrow a^{-}} f(x)=$ $-\infty, \lim _{x \rightarrow a^{+}} f(x)=\infty$ or $\lim _{x \rightarrow a^{+}} f(x)=\infty$ then $x=a$ is a vertical asymptote.
To find horizontal asymptote, we find $\lim _{x \rightarrow-\infty} f(x)$ and $\lim _{x \rightarrow \infty} f(x)$. If $\lim _{x \rightarrow-\infty} f(x)=b$ then $y=b$ is a horizontal asymptote. If $\lim _{x \rightarrow \infty} f(x)=c$ then then $y=c$ is a horizontal asymptote.
$\frac{1}{0^{+}}=\frac{\text { negative number }}{0^{-}}=\infty, \frac{1}{0^{-}}=\frac{\text { positive number }}{0^{-}}=-\infty, 0^{+} \cdot 0^{-}=0^{-}, 0^{-} \cdot 0^{-}=0^{+}$.
$\frac{1}{\infty}=\frac{1}{-\infty}=0, \infty \cdot \infty=-\infty \cdot-\infty=\infty, \infty \cdot-\infty=-\infty,(-\infty)^{\text {odd power }}=-\infty$.
$x^{p}=x^{n} x^{-n+p}, \lim _{x \rightarrow \infty} x^{\text {positive number }}=\infty, \lim _{x \rightarrow \infty} x^{\text {negative number }}=0$,
$\lim _{x \rightarrow-\infty} x^{\text {positive and even integer }}=\infty, \lim _{x \rightarrow-\infty} x^{\text {positive and odd integer }}=-\infty$.
Given a rational function $R(x)$. Suppose we rearrange the order of the power in the top and the bottom so it's in decreasing order, i.e $R(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}$. For example, $R(x)=\frac{x-x^{3}+2}{x-5 x^{3}+6 x^{4}}=\frac{-x^{3}+x+2}{6 x^{4}-5 x^{3}+x}$.
$\lim _{x \rightarrow \pm \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}=\lim _{x \rightarrow \pm \infty} \frac{x^{n}\left(a_{n}+a_{n-1} x^{-1}+\cdots+a_{1} x^{-n+1}+a_{0} x^{-n}\right)}{x^{m}\left(b_{m}+b_{m-1} x^{-1}+\cdots+b_{1} x^{-m+1}+b_{0} x^{-m}\right)}=$ $\lim _{x \rightarrow \infty} \frac{a_{n}}{b_{m}} x^{n-m}$.
7. Determine the following limits
(a) $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-3 x+2}$

Solution: $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-3 x+2}=\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x-2)}=\lim _{x \rightarrow 1} \frac{1}{x-2}=-1$.
(b) $\lim _{x \rightarrow 2^{+}} \frac{x-4}{x^{2}-5 x+6}, \lim _{x \rightarrow 2^{-}} \frac{x-4}{x^{2}-5 x+6}, \lim _{x \rightarrow 2} \frac{x-4}{x^{2}-5 x+6}$

Solution: Plugging in the expression, we get $\frac{2}{0}$. So we need to factor the bottom to analyze its behavior. $\lim _{x \rightarrow 2^{+}} \frac{x-4}{x^{2}-5 x+6}=$ $\lim _{x \rightarrow 2^{+}} \frac{x-4}{(x-2)(x-3)}=\frac{-2}{0^{+} .-1}=\frac{-2}{0^{-}}=\infty$.
$\lim _{x \rightarrow 2^{-}} \frac{x-4}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{-}} \frac{x-4}{(x-2)(x-3)}=\frac{-2}{0^{-} \cdot-1}=\frac{-2}{0^{+}}=-\infty$.
Now we know that $\lim _{x \rightarrow 2^{+}} \frac{x-4}{x^{2}-5 x+6} \neq \lim _{x \rightarrow 2^{-}} \frac{x-4}{x^{2}-5 x+6}$. So $\lim _{x \rightarrow 2} \frac{x-4}{x^{2}-5 x+6}$ doesn't exist.
(c) $\lim _{x \rightarrow \infty} \frac{-2 x^{2}+x^{6}+1}{x^{3}-5 x+6}, \lim _{x \rightarrow-\infty} \frac{-2 x^{2}+x^{6}+1}{x^{3}-5 x+6}$

Solution: $\lim _{x \rightarrow \infty} \frac{-2 x^{2}+x^{6}+1}{x^{3}-5 x+6}=\lim _{x \rightarrow \infty} \frac{x^{6}\left(-2 x^{-4}+1+x^{-6}\right)}{x^{3}\left(1-5 x^{-2}+6 x^{-3}\right)}=\lim _{x \rightarrow \infty} \frac{x^{3}\left(-2 x^{-4}+1+x^{-6}\right)}{\left(1-5 x^{-2}+6 x^{-3}\right)}=$ $\lim _{x \rightarrow \infty} x^{3}=\infty$. Note that we have used the fact that $\lim _{x \rightarrow \infty} \frac{\left(-2 x^{-4}+1+x^{-6}\right)}{\left(1-5 x^{-2}+6 x^{-3}\right)}=$ 1.

Similarly, $\lim _{x \rightarrow-\infty} \frac{-2 x^{2}+x^{6}+1}{x^{3}-5 x+6}=\lim _{x \rightarrow-\infty} \frac{x^{6}\left(-2 x^{-4}+1+x^{-6}\right)}{x^{3}\left(1-5 x^{-2}+6 x^{-3}\right)}=\lim _{x \rightarrow-\infty} \frac{x^{3}\left(-2 x^{-4}+1+x^{-6}\right)}{\left(1-5 x^{-2}+6 x^{-3}\right)}=$ $\lim _{x \rightarrow-\infty} x^{3}=(-\infty)^{3}=-\infty$.
(d) $\lim _{x \rightarrow \infty} \frac{-2 x^{6}+x^{2}+1}{4 x-5 x+6 x^{6}}, \lim _{x \rightarrow-\infty} \frac{-2 x^{6}+x^{2}+1}{4 x-5 x+6 x^{6}}$

Solution: $\lim _{x \rightarrow \infty} \frac{-2 x^{6}+x^{2}+1}{4 x-5 x+6 x^{6}}=\lim _{x \rightarrow \infty} \frac{x^{6}\left(-2+x^{-4}+x^{-6}\right)}{x^{6}\left(4 x^{-3}-5 x^{-5}+6\right)}$
(factoring out x^{6} from the top and the bottom) $=\lim _{x \rightarrow \infty} \frac{\left(-2+x^{-4}+x^{-6}\right)}{\left(4 x^{-3}-5 x^{-5}+6\right)}=$ $\frac{-2}{6}=\frac{-1}{3}$.
Similarly, $\lim _{x \rightarrow-\infty} \frac{-2 x^{6}+x^{2}+1}{4 x-5 x+6 x^{6}}=\lim _{x \rightarrow-\infty} \frac{x^{6}\left(-2 x^{-4}+1+x^{-6}\right)}{x^{6}\left(4 x^{-3}-5 x^{-5}+6\right)}=\lim _{x \rightarrow-\infty} \frac{\left(-2 x^{-4}+1+x^{-6}\right)}{\left(4 x^{-3}-5 x^{-5}+6\right)}=$ $\frac{1}{6}$.
(e) $\lim _{x \rightarrow \infty} \frac{-2 x^{6}+x^{2}+1}{4 x^{3}-5 x^{8}+6}, \lim _{x \rightarrow-\infty} \frac{-2 x^{6}+x^{2}+1}{4 x^{8}-5 x+6}$

Solution: $\lim _{x \rightarrow \infty} \frac{-2 x^{6}+x^{2}+1}{4 x^{3}-5 x^{8}+6}=\lim _{x \rightarrow \infty} \frac{x^{6}\left(-2+x^{-4}+x^{-6}\right)}{x^{8}\left(4 x^{-5}-5+6 x^{-8}\right)}=\lim _{x \rightarrow \infty} \frac{\left(-2+x^{-4}+x^{-6}\right)}{x^{2}\left(4 x^{-5}-5+6 x^{-8}\right)}=$ $\frac{-2}{\infty \cdot(-5)}=0$.
Similarly, $\lim _{x \rightarrow-\infty} \frac{-2 x^{6}+x^{2}+1}{4 x^{3}-5 x^{8}+6}=\lim _{x \rightarrow-\infty} \frac{x^{6}\left(-2+x^{-4}+x^{-6}\right)}{x^{8}\left(4 x^{-5}-5+6 x^{-8}\right)}=\lim _{x \rightarrow-\infty} \frac{1\left(-2+x^{-4}+x^{-6}\right)}{x^{2}\left(4 x^{-5}-5+6 x^{-8}\right)}=$ $\lim _{x \rightarrow-\infty} \frac{-2}{-\infty \cdot(-5)}=0$.
(f) $\lim _{x \rightarrow \infty} x^{2}-\frac{x^{4}+1}{x^{2}+1}$

Solution: $\lim _{x \rightarrow \infty} x^{2}-\frac{x^{4}+1}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(x^{2}+1\right)}{x^{2}+1}-\frac{x^{4}+1}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{4}+x^{2}}{x^{2}+1}-$ $\frac{x^{4}+1}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{4}+x^{2}-\left(x^{4}+1\right)}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{4}+x^{2}-x^{4}-1}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{2}-1}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(1-x^{-2}\right)}{x^{2}\left(1+x^{-2}\right)}=$ $\lim _{x \rightarrow \infty} \frac{\left(1-x^{-2}\right)}{\left(1+x^{-2}\right)}=1$.
(g) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-\sqrt{x^{2}-1}$

Solution: $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-\sqrt{x^{2}-1}=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-\sqrt{x^{2}-1}\right) \frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}=$ $\lim _{x \rightarrow \infty} \frac{\left(x^{2}+1\right)-\left(x^{2}-1\right)}{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}=\lim _{x \rightarrow \infty} \frac{x^{2}+1-x^{2}+1}{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}$
$=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}=\lim _{x \rightarrow \infty} \frac{2}{x\left(\sqrt{1+x^{-2}}+\sqrt{1-x^{-2}}\right)}$
$=\lim _{x \rightarrow \infty} \frac{1}{x} \lim _{x \rightarrow \infty} \frac{2}{\sqrt{1+x^{-2}}+\sqrt{1-x^{-2}}}=0$.
(h) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-\sqrt{x-1}$

Solution: $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-\sqrt{x-1}=\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-\sqrt{x-1}\right) \frac{\sqrt{x^{2}+1}+\sqrt{x-1}}{\sqrt{x^{2}+1}+\sqrt{x-1}}=$ $\lim _{x \rightarrow \infty} \frac{\left(x^{2}+1\right)-(x-1)}{\sqrt{x^{2}+1}+\sqrt{x-1}}=\lim _{x \rightarrow \infty} \frac{x^{2}+1-x+1}{\sqrt{x^{2}+1}+\sqrt{x-1}}$
$=\lim _{x \rightarrow \infty} \frac{x^{2}-x+2}{\sqrt{x^{2}+1}+\sqrt{x-1}}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(1-x^{-1}+2 x^{-2}\right)}{x\left(\sqrt{1+x^{-2}}+\sqrt{x^{-1}-x^{-2}}\right)}$
$=\lim _{x \rightarrow \infty} \frac{x\left(1-x^{-1}+2 x^{-2}\right)}{\left(\sqrt{1+x^{-2}}+\sqrt{x^{-1}-x^{-2}}\right)}=\lim _{x \rightarrow \infty} x \lim _{x \rightarrow \infty} \frac{\left(1-x^{-1}+2 x^{-2}\right)}{\left(\sqrt{1+x^{-2}}+\sqrt{x^{-1}-x^{-2}}\right)}=\infty$. $1=\infty$.
8. Find the domain of the following functions and determine the vertical and horizontal asymptotes of the graph of the following functions.
(a) $f(x)=\frac{x-1}{x^{2}-3 x+2}$

Solution: To find the domain, we factor $x^{2}-3 x+2=(x-1)(x-2)$.
So the domain is $\{x \mid x \neq 1$ and $x \neq 2\}$. At $x=1, \lim _{x \rightarrow 1^{-}} \frac{x-1}{x^{2}-3 x+2}=$ $\lim _{x \rightarrow 1^{-}} \frac{x-1}{(x-1)(x-2)}=\lim _{x \rightarrow 1^{-}} \frac{1}{(x-2)}=-1$ and $\lim _{x \rightarrow 1^{+}} \frac{x-1}{x^{2}-3 x+2}=\lim _{x \rightarrow 1^{+}} \frac{x-1}{(x-1)(x-2)}=$ $\lim _{x \rightarrow 1^{+}} \frac{1}{1(x-2)}=-1$. So $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-3 x+2}=-1$. Hence $x=1$ is not a vertical asymptote. In fact, $\frac{x-1}{x^{2}-3 x+2}$ has a removable discontinuity at $x=1$.
At $x=2, \lim _{x \rightarrow 2^{-}} \frac{x-1}{x^{2}-3 x+2}=\lim _{x \rightarrow 2^{-}} \frac{x-1}{(x-1)(x-2)}=\lim _{x \rightarrow 2^{-}} \frac{1}{(x-2)}=\frac{1}{0^{-}}=$ $-\infty$ and $\lim _{x \rightarrow 2^{+}} \frac{x-1}{x^{2}-3 x+2}=\lim _{x \rightarrow 2^{+}} \frac{x-1}{(x-1)(x-2)}=\lim _{x \rightarrow 2^{+}} \frac{1}{(x-2)}=\frac{1}{0^{+}}=\infty$.
Hence $x=2$ is a vertical asymptote.
$\lim _{x \rightarrow \infty} \frac{x-1}{x^{2}-3 x+2}=\lim _{x \rightarrow \infty} \frac{x\left(1-x^{-1}\right)}{x^{2}\left(1-3 x^{-1}+2 x^{-2}\right)} \lim _{x \rightarrow \infty} \frac{1\left(1-x^{-1}\right)}{x\left(1-3 x^{-1}+2 x^{-2}\right)}$
$=\lim _{x \rightarrow \infty} \frac{1}{x} \lim _{x \rightarrow \infty} \frac{\left(1-x^{-1}\right)}{\left(1-3 x^{-1}+2 x^{-2}\right)}=0 \cdot 1=0$. Similarly, $\lim _{x \rightarrow-\infty} \frac{x-1}{x^{2}-3 x+2}=$ $\lim _{x \rightarrow-\infty} \frac{x\left(1-x^{-1}\right)}{x^{2}\left(1-3 x^{-1}+2 x^{-2}\right)} \lim _{x \rightarrow-\infty} \frac{1\left(1-x^{-1}\right)}{x\left(1-3 x^{-1}+2 x^{-2}\right)}$
$=\lim _{x \rightarrow-\infty} \frac{1}{x} \lim _{x \rightarrow-\infty} \frac{\left(1-x^{-1}\right)}{\left(1-3 x^{-1}+2 x^{-2}\right)}=0 \cdot 1=0$. Hence $y=0$ is a horizontal asymptote.
(b) $f(x)=\frac{x-1}{x^{2}-5 x+6}$

To find the domain, we factor $x^{2}-5 x+6=(x-2)(x-3)$. So the domain is $\{x \mid x \neq 2$ and $x \neq 3\}$. At $x=2, \lim _{x \rightarrow 2^{-}} \frac{x-1}{x^{2}-5 x+6}=$ $\lim _{x \rightarrow 2^{-}} \frac{x-1}{(x-2)(x-3)}=\frac{1}{0^{-} \cdot(-1)}=\frac{1}{0^{+}}=\infty$ and $\lim _{x \rightarrow 2^{+}} \frac{x-1}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{+}} \frac{x-1}{(x-2)(x-3)}==$ $\frac{1}{0^{+} \cdot(-1)}=\frac{1}{0^{-}}=-\infty$ Hence $x=2$ is a vertical asymptote.
At $x=3, \lim _{x \rightarrow 3^{-}} \frac{x-1}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{-}} \frac{x-1}{(x-2)(x-3)}==\frac{2}{1 \cdot 0^{-}}=\frac{2}{0^{-}}=-\infty$ and $\lim _{x \rightarrow 3^{+}} \frac{x-1}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{+}} \frac{x-1}{(x-2)(x-3)}==\frac{2}{1 \cdot 0^{+}}=\frac{2}{0^{+}}=\infty$. Hence $x=3$ is a vertical asymptote.
$\lim _{x \rightarrow-\infty} \frac{x-1}{x^{2}-5 x+6}=\lim _{x \rightarrow-\infty} \frac{x\left(1-x^{-1}\right)}{x^{2}\left(1-5 x^{-1}+6 x^{-2}\right)} \lim _{x \rightarrow-\infty} \frac{1\left(1-x^{-1}\right)}{x\left(1-5 x^{-1}+6 x^{-2}\right)}$
$=\lim _{x \rightarrow-\infty} \frac{1}{x} \lim _{x \rightarrow-\infty} \frac{\left(1-x^{-1}\right)}{\left(1-5 x^{-1}+6 x^{-2}\right)}=0 \cdot 1=0$. Similarly, $\lim _{x \rightarrow \infty} \frac{x-1}{x^{2}-5 x+6}=$ $\lim _{x \rightarrow \infty} \frac{1}{x} \lim _{x \rightarrow \infty} \frac{\left(1-x^{-1}\right)}{\left(1-5 x^{-1}+6 x^{-2}\right)}=0 \cdot 1=0$. Hence $y=0$ is a horizontal asymptote.
(c) $f(x)=\frac{x^{3}-1}{x^{2}-5 x+6}$

To find the domain, we factor $x^{2}-5 x+6=(x-2)(x-3)$. So the domain is $\{x \mid x \neq 2$ and $x \neq 3\}$. At $x=2, \lim _{x \rightarrow 2^{-}} \frac{x^{3}-1}{x^{2}-5 x+6}=$ $\lim _{x \rightarrow 2^{-}} \frac{x^{3}-1}{(x-2)(x-3)}=\frac{7}{0^{-} \cdot(-1)}=\frac{7}{0^{+}}=\infty$ and $\lim _{x \rightarrow 2^{+}} \frac{x^{3}-1}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{+}} \frac{x^{3}-1}{(x-2)(x-3)}==$ $\frac{7}{0^{+} \cdot(-1)}=\frac{7}{0^{-}}=-\infty$ Hence $x=2$ is a vertical asymptote.
At $x=3, \lim _{x \rightarrow 3^{-}} \frac{x^{3}-1}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{-}} \frac{x^{3}-1}{(x-2)(x-3)}==\frac{26}{1.0^{-}}=\frac{26}{0^{-}}=-\infty$ and
$\lim _{x \rightarrow 3^{+}} \frac{x^{3}-1}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{+}} \frac{x^{3}-1}{(x-2)(x-3)}==\frac{26}{1 \cdot 0^{+}}=\frac{26}{0^{+}}=\infty$. Hence $x=3$ is a vertical asymptote.
$\lim _{x \rightarrow-\infty} \frac{x^{3}-1}{x^{2}-5 x+6}=\lim _{x \rightarrow-\infty} \frac{x^{3}\left(1-x^{-3}\right)}{x^{2}\left(1-5 x^{-1}+6 x^{-2}\right)} \lim _{x \rightarrow-\infty} \frac{x\left(1-x^{-3}\right)}{\left(1-5 x^{-1}+6 x^{-2}\right)}$
$=\lim _{x \rightarrow-\infty} x \lim _{x \rightarrow-\infty} \frac{\left(1-x^{-1}\right)}{\left(1-5 x^{-1}+6 x^{-2}\right)}=-\infty \cdot 1=-\infty$. Similarly, $\lim _{x \rightarrow \infty} \frac{x^{3}-1}{x^{2}-5 x+6}=$ $\lim _{x \rightarrow \infty} x \lim _{x \rightarrow \infty} \frac{\left(1-x^{-1}\right)}{\left(1-5 x^{-1}+6 x^{-2}\right)}=\infty$. Hence $y=\frac{x^{3}-1}{(x-2)(x-3)}$ doesn't have a horizontal asymptote.
(d) $f(x)=\frac{-x^{2}+1}{x^{2}-5 x+6}$

To find the domain, we factor $x^{2}-5 x+6=(x-2)(x-3)$. So the domain is $\{x \mid x \neq 2$ and $x \neq 3\}$. At $x=2, \lim _{x \rightarrow 2^{-}} \frac{-x^{2}+1}{x^{2}-5 x+6}=$ $\lim _{x \rightarrow 2^{-}} \frac{-x^{2}+1}{(x-2)(x-3)}==\frac{-3}{0^{-} \cdot(-1)}=\frac{-3}{0^{+}}=-\infty$ and $\lim _{x \rightarrow 2^{+}} \frac{-x^{2}+1}{x^{2}-5 x+6}=\lim _{x \rightarrow 2^{+}} \frac{-x^{2}+1}{(x-2)(x-3)}=$ $\frac{-3}{0^{+} \cdot(-1)}=\frac{-3}{0^{-}}=\infty$ Hence $x=2$ is a vertical asymptote.
At $x=3, \lim _{x \rightarrow 3^{-}} \frac{-x^{2}+1}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{-}} \frac{-x^{2}+1}{(x-2)(x-3)}==\frac{-8}{1.0^{-}}=\frac{-8}{0^{-}}=\infty$ and $\lim _{x \rightarrow 3^{+}} \frac{-x^{2}+1}{x^{2}-5 x+6}=\lim _{x \rightarrow 3^{+}} \frac{-x^{2}+1}{(x-2)(x-3)}==\frac{-8}{1.0^{+}}=\frac{-8}{0^{+}}=-\infty$. Hence $x=3$ is a vertical asymptote.
$\lim _{x \rightarrow-\infty} \frac{-x^{2}+1}{x^{2}-5 x+6}=\lim _{x \rightarrow-\infty} \frac{x^{2}\left(-1+x^{-2}\right)}{x^{2}\left(1-5 x^{-1}+6 x^{-2}\right)} \lim _{x \rightarrow-\infty} \frac{1\left(-1+x^{-2}\right)}{\left(1-5 x^{-1}+6 x^{-2}\right)}$
$=-1$. Similarly, $\lim _{x \rightarrow-\infty} \frac{-x^{2}+1}{x^{2}-5 x+6}=\lim _{x \rightarrow-\infty} \frac{1\left(-1+x^{-2}\right)}{\left(1-5 x^{-1}+6 x^{-2}\right)}=-1$. Hence $y=-1$ is a horizontal asymptote.

