Review Problem for Midterm \#1

Midterm I: Wednesday, September 22 in class

Topics: 1.1, 1.3 and 2.1-2.6 (except 2.3)

1. Let $f(x)=-2 x^{2}+3 x+1$. Find an equation of the tangent line to the curve at $P(1, f(1))$.
2. Let $f(x)=\frac{2}{x^{2}+1}$. Find an equation of the tangent line to the curve at $P(1, f(1))$.
3. Let $f(x)=\frac{2}{\sqrt{x^{2}+3}}$. Find an equation of the tangent line to the curve at $P(1, f(1))$.
4. A piecewise defined function is given by

$$
f(x)=\left\{\begin{aligned}
-x-1, & x<-1 \\
x^{2}-1, & -1 \leq x<2 \\
x+2, & 2 \leq x
\end{aligned}\right.
$$

Determine if f is left continuous, right continuous or continuous at $x=-1$ or $x=2$.
5. Classify the discontinuity of the following functions (removable, infinite, jump or oscillating discontinuity). Redefine the value of the function if it's removable.
(a) $f(x)=\frac{x-3}{x^{2}-4 x+3}$
(b)

$$
f(x)=\left\{\begin{aligned}
\frac{x+1}{x^{2}-1}, & x<-1 \\
\frac{x+1}{8}, & -1 \leq x \leq 1 \\
\frac{\sqrt{x}-1}{x^{2}-1}, & 1<x
\end{aligned}\right.
$$

6. A piecewise defined function is given by

$$
f(x)=\left\{\begin{aligned}
x-1, & x<-1 \\
a x+b, & -1 \leq x<1 \\
x^{2}, & 1 \leq x
\end{aligned}\right.
$$

(a) Find the graph of $y=f(x)$ over the interval $(-\infty,-1) \cup[2, \infty)$.
(b) Determine the value of a and b so that f is continuous everywhere. Also explain your answer geometrically.
7. Determine the following limits
(a) $\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-3 x+2}$
(b) $\lim _{x \rightarrow 2^{+}} \frac{x-4}{x^{2}-5 x+6}, \lim _{x \rightarrow 2^{-}} \frac{x-4}{x^{2}-5 x+6}, \lim _{x \rightarrow 2} \frac{x-4}{x^{2}-5 x+6}$
(c) $\lim _{x \rightarrow \infty} \frac{-2 x^{2}+x^{6}+1}{x^{3}-5 x+6}, \lim _{x \rightarrow-\infty} \frac{-2 x^{2}+x^{6}+1}{x^{3}-5 x+6}$
(d) $\lim _{x \rightarrow \infty} \frac{-2 x^{6}+x^{2}+1}{4 x-5 x+6 x^{6}}, \lim _{x \rightarrow-\infty} \frac{-2 x^{6}+x^{2}+1}{4 x-5 x+6 x^{6}}$
(e) $\lim _{x \rightarrow \infty} \frac{-2 x^{6}+x^{2}+1}{4 x^{3}-5 x^{8}+6}, \lim _{x \rightarrow-\infty} \frac{-2 x^{6}+x^{2}+1}{4 x^{8}-5 x+6}$
(f) $\lim _{x \rightarrow \infty} x^{2}-\frac{x^{4}+1}{x^{2}+1}$
(g) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-\sqrt{x^{2}-1}$
(h) $\lim _{x \rightarrow \infty} \sqrt{x^{2}+1}-\sqrt{x-1}$
8. Find the domain of the following functions and determine the vertical and horizontal asymptotes of the graph of the following functions.
(a) $f(x)=\frac{x-1}{x^{2}-3 x+2}$
(b) $f(x)=\frac{x-1}{x^{2}-5 x+6}$
(c) $f(x)=\frac{x^{3}-1}{x^{2}-5 x+6}$
(d) $f(x)=\frac{-x^{2}+1}{x^{2}-5 x+6}$

