Math 6(8)540 Homework 5 Due date: December 5

(1) Integration by parts to prove the interpolation inequality

$$
\int_{\Omega}|D u|^{2} d x \leq C\left(\int_{\Omega} u^{2} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|D^{2} u\right|^{2} d x\right)^{\frac{1}{2}}
$$

for all $u \in C_{0}^{\infty}(\Omega)$. By approximation, prove this inequality if $u \in W^{2,2}(\Omega) \cap W_{0}^{1,2}(\Omega)$.
(Hint: $\int_{\Omega} \operatorname{div}(u \nabla u) d x=\int_{\Omega}\left(|D u|^{2}+u \triangle u\right) d x$. Note that $\left|D^{2} u\right|^{2}=$ $\left.\sum_{i, j=1}^{n}\left|u_{i j}\right|^{2}.\right)$
(2) Integration by parts to prove

$$
\int_{\Omega}|D u|^{p} d x \leq C\left(\int_{\Omega} u^{p} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|D^{2} u\right|^{p} d x\right)^{\frac{1}{2}}
$$

for $2 \leq p<\infty$ and all $u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$.
(Hint: $\int_{\Omega}|D u|^{p} d x=\sum_{i=1}^{n} \int_{\Omega} u_{x_{i}} u_{x_{i}}|D u|^{p-2}$) $d x$.
(3) Suppose Ω is bounded and $u \in W^{1, p}(\Omega)$ satisfies $D u=0$ a.e. in Ω. Prove that u is constant $a . e$. in Ω.

