Math 6(8)540 Homework 3 Due date: October 25

(1) In the class, we have proved that $\frac{\| y-\frac{x}{\|x\|^{2} \|^{2}}}{\|y-x\|^{2}}=\frac{1}{\|x\|^{2}}$ for $\|y\|=$ 1. Consider the quantity $f(y)=\frac{\|y-a x\|^{2}}{\|y-x\|^{2}}$. Show that $f(y)$ is independent of y for $\|y\|=1$ if and only if $a=1$ or $a=\frac{1}{\|x\|^{2}}$. (Hint: Just consider the two dimensional case and parameterize S^{1} by $y=(\cos (t), \sin (t))$.)
(2) Let $G(x, y)$ be he Green's function on Ω. Use the strong maximum principle to prove that the Green's function $G(x, y)>0$ for $x \neq y$. (Hint: Consider the function $u(z)=G(x, z)=$ $\Phi(z-x)-\phi^{x}(z)$ on $\left.\Omega \backslash B(x, \epsilon).\right)$
(3) (a) Suppose $\triangle u=0$ in Ω and $\left.u\right|_{\partial \Omega}=g$. Show that the Poisson's formula on the unit disk in R^{2}

$$
u(x)=\frac{1-|x|^{2}}{2 \pi} \int_{S^{1}} \frac{g(y)}{|x-y|^{2}} d S(y)
$$

is equivalent to

$$
u(r, \theta)=\frac{1-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{g(\phi)}{1+r^{2}-2 r \cos (\theta-\phi)} d \phi
$$

(b) Use formula in part (a) to prove that

$$
r^{k} \cos (k \theta)=\frac{1-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{\cos (k \phi)}{1+r^{2}-2 r \cos (\theta-\phi)} d \phi
$$

and

$$
r^{k} \sin (k \theta)=\frac{1-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{\sin (k \phi)}{1+r^{2}-2 r \cos (\theta-\phi)} d \phi
$$

(4) Let $\mathfrak{A}=\left\{u \mid u \in C^{2}(\bar{\Omega}), u=g\right.$ on $\left.\partial \Omega\right\}$ Consider the area functional of the graph of u defined by $F(u)=\int_{\Omega} \sqrt{1+|\nabla u|^{2}} d x$. Show that the minimizer of the functional in \mathfrak{A} satisfies

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0
$$

(Hint: Consider $f(\tau)=F(u+\tau \rho)$ where $\rho \in C_{0}^{\infty}(\Omega)$.)

