Math 6(8)540 Homework 2 Due date: October 11

- (1) A function $u \in L^1_{loc}(\Omega)$ is weakly harmonic if $\int_{\Omega} u \Delta \psi = 0$ for all $\psi \in C^{\infty}_{c}(\Omega)$. In the following. $u^{\epsilon} = \eta_{\epsilon} * u$ is the mollification of u
 - (a) Prove that if $u \in L^1_{loc}(\Omega)$ is a weakly harmonic function then $\Delta u^{\epsilon} = 0$ on Ω_{ϵ} .
 - (b) Prove that $u^{\sigma} = (u^{\sigma})^{\tau}$ in $\Omega_{\sigma+\tau}$.
 - (c) Prove that if $u \in L^1_{loc}(\Omega)$ is a weakly harmonic function then u = v a.e. where v is a $C^{\infty}(\Omega)$ harmonic function. (Hint: Use the fact that $\lim_{\epsilon \to 0} f^{\epsilon} = f$ a.e. and consider $\lim_{\sigma \to 0} u_{\sigma}$).
- (2) Recall that $u \in C^2(\overline{\Omega})$ is subharmonic if $\Delta u \geq 0$ in Ω . Now we want to give another notion of subharmonic function for continuous function. A $C^0(\Omega)$ function u is subharmonic in Ω if for every ball $B \subset \Omega$ and every function h harmonic in Bsatisfying $u \leq h$ on ∂B , we also have $u \leq h$ in B. Prove that a $C^0(\Omega)$ subharmonic function satisfies the strong maximum principle. (Hint: Prove by contradiction. Suppose $x_0 \in \Omega$ where $u(x_0) = sup_\Omega u$. Consider h where $\Delta h = 0$ and h = u on $\partial(B(x_0, r))$.
- (3) Suppose f is defined in \mathbb{R}^n , $\Delta f = 0$ and $|\nabla f| = 1$. Prove that f is a linear function. (Hint: Use Bochner formula).
- (4) Suppose $u \in C^2(\overline{B_{2r}}) > 0$ satisfies $\Delta u = -\lambda u$ where λ is a positive constant.
 - (a) Let $v = \ln u$ and $w = |\nabla v|^2$. Show that $\Delta v = -w \lambda$. (b) Show that

$$\triangle(w\phi^4) + 2\nabla v \cdot \nabla(w\phi^4)$$

$$= 2\phi^4 |Hessv|^2 + 4\sum_{ij} \frac{\partial \phi^4}{\partial x_i} \frac{\partial v}{\partial x_j} \frac{\partial^2 v}{\partial x_i \partial x_j} + w \triangle \phi^3 + 2\nabla v \cdot \phi^4.$$

(c) Prove that $\sup_{B_r} \frac{|\nabla u|}{u} \leq C$ where C depends on n only.

(5) Use poisson formula for the ball to prove

$$r^{n-2}\frac{r-|x|}{(r+|x|)^{n-1}}u(0) \le u(x) \le r^{n-2}\frac{r+|x|}{(r-|x|)^{n-1}}u(0)$$

whenever u is positive and harmonic in B(0, r).