Solutions to HW 2

(1) (Problem 2.1 from Lec2) (15 pts)

If A is triangular, then A is either upper-triangular or lower triangular. Let us assume A is upper-triangular first. A is unitary then $A^{-1}=A^{*}$. Since A is uppertriangular, we know that A^{-1} is upper-triangular by exercise 1.3 and A^{*} is lowertriangular. In particular, A^{*} is diagonal and A is diagonal.

The case that A is lower-triangular can be proved in a similar way.
(2) (Problem 2.3 from Lec2) In the following, we use the notation $x^{*} y=\langle x, y\rangle$.
(a) (10 pts) Recall that $\langle x, A x\rangle=\left\langle A^{*} x, x\right\rangle$. Using $A x=\lambda x$ and $A=A^{*}$, we get $\lambda|x|^{2}=\bar{\lambda}|x|^{2}$. Thus we have $\lambda=\bar{\lambda}$, that is, λ is real.
(b) (10 pts) Suppose $A x=\lambda x$ and $A y=\mu y$ where $\lambda \in R, \mu \in R$ and $\lambda \neq \mu$. Then $\lambda\langle x, y\rangle=\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle=\langle x, A y\rangle=\mu\langle x, y\rangle$. Thus $\lambda\langle x, y\rangle=\mu\langle x, y\rangle$. Since $\lambda \neq \mu$, we must have $\langle x, y\rangle=0$. Thus x and y are orthogonal.
(3) (Problem 2.4 from Lec2) (10 pts) Suppose λ is an eigenvalues of A with eigenvector nonzero eigenvector x. Then $A x=\lambda x$. Since A is unitary, we have $\langle x, x\rangle=$ $\langle A x, A x\rangle=\langle\lambda x, \lambda x\rangle=|\lambda|^{2}\langle x, x\rangle$. Therefore $|\lambda|^{2}=1$. This means that the absolute value of any eigenvalue of a unitary matrix is one.
(4) (Problem 2.5 from Lec2)
(a) (10 pts) Since $(i S)^{*}=-i S^{*}=-i(-S)=i S$, we have $i S$ is hermitian.

So the eigenvalues of $i S$ are real and the eigenvalues of S are pure imaginary. We have used that fact that if λ is an eigenvalue of S then $i \lambda$ is an eigenvalue of $i S$.
(b) (10 pts) We prove it by contradiction. Suppose $I-S$ is singular. This implies that 1 is an eigenvalue of S which contradicts to the fact that the eigenvalue of S is pure imaginary.
(c) (15 pts) Let $Q=(I-S)^{-1}(I+S)$. Then $Q^{*}=\left((I-S)^{-1}(I+S)\right)^{*}=(I+$ $S)^{*}(I-S)^{-1^{*}}=(I+S)^{*}(I-S)^{*-1}=(I-S)(I+S)^{-1}$. Then $Q Q^{*}=(I-S)^{-1}(I+$ $S)(I-S)(I+S)^{-1}=(I-S)^{-1}(I-S)(I+S)(I+S)^{-1}=I$. We have used the fact that $(I+S)(I-S)=(I-S)(I+S)=I-S^{2}$.
(5) (Problem 2.6 from Lec2) (20 pts) We compute

$$
\begin{aligned}
& \left(I+\alpha u v^{*}\right)\left(I+u v^{*}\right)=\left(I+u v^{*}\right)+\alpha u v^{*}+\alpha u v^{*} u v^{*} \\
= & I+\left(1+\alpha+\alpha v^{*} u\right) u v^{*}
\end{aligned}
$$

Note that $v^{*} u$ is a scalar(number). If $1+v^{*} u \neq 0$ then we can choose α such that $1+\alpha+\alpha v^{*} u=0$, i.e. $\alpha=-\frac{1}{1+v^{*} u}$. This implies that A is nonsingular if $1+v^{*} u \neq 0$ with $A^{-1}=I-\frac{1}{1+v^{*} u} u v^{*}$

If $1+v^{*} u=0$ then A is singular. Suppose $w \in \operatorname{Null}(A)$. Then $\left(I+u v^{*}\right) w=0$. This implies that $w+\left(v^{*} w\right) u=0$ and $w=-\left(v^{*} w\right) u$. Thus we know that $\operatorname{Null}(A)=$ $\operatorname{span}(u)$.

