Solutions to HW 1

(1) (Problem 1.1 from Lec1) First, we observe that any "linear column operation" can be realized as a matrix multiplication from the right and any "linear row operation" can be realized as a matrix multiplication from the left.

In the following, we express each operation as a matrix multiplication.
Double column one of a matrix $D=\left(\begin{array}{llll}d_{1} & d_{2} & d_{3} & d_{4}\end{array}\right)$ can be realized as

$$
\left(\begin{array}{llll}
d_{1} & d_{2} & d_{3} & d_{4}
\end{array}\right)\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Add row 3 to roe 1 of a matrix F
Halve row 3 of a matrix $E=\left(\begin{array}{c}e_{1} \\ e_{2} \\ e_{3} \\ e_{4}\end{array}\right)$ can be realized as $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}e_{1} \\ e_{2} \\ e_{3} \\ e_{4}\end{array}\right)$.
Add row 3 to row 1 of a matrix $F=\left(\begin{array}{c}f_{1} \\ f_{2} \\ f_{3} \\ f_{4}\end{array}\right)$ can be realized as $\left(\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}f_{1} \\ f_{2} \\ f_{3} \\ f_{4}\end{array}\right)$.
Interchange column 1 and column 4 of a matrix $G=\left(\begin{array}{llll}g_{1} & g_{2} & g_{3} & g_{4}\end{array}\right)$ can be realized as

$$
\left(\begin{array}{llll}
g_{1} & g_{2} & g_{3} & g_{4}
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Subtract row 2 to from each of the other rows of a matrix $H=\left(\begin{array}{c}h_{1} \\ h_{2} \\ h_{3} \\ h_{4}\end{array}\right)$ can be realized as $\left(\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1\end{array}\right)\left(\begin{array}{l}h_{1} \\ h_{2} \\ h_{3} \\ h_{4}\end{array}\right)$.

Replace column 4 by column 3 of a matrix $I=\left(\begin{array}{llll}I_{1} & I_{2} & I_{3} & I_{4}\end{array}\right)$ can be realized as

$$
\left(\begin{array}{llll}
I_{1} & I_{2} & I_{3} & I_{4}
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Delete column 1 of a matrix $J=\left(\begin{array}{cccc}J_{1} & J_{2} & J_{3} & J_{4}\end{array}\right)$ can be realized as $\left(\begin{array}{llll}J_{1} & J_{2} & J_{3} & J_{4}\end{array}\right)\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.

In part (a), the answer can be expressed as

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) B \\
& \left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
A & =\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & \frac{1}{2} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

(Add row three to row one of the matrix $\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$=\left(\begin{array}{cccc}1 & -1 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & \frac{1}{2} & 0 \\ 0 & -1 & 0 & 1\end{array}\right)$
(Subtract row two from each of the other rows of the matrix $\left(\begin{array}{cccc}1 & 0 & \frac{1}{2} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

$$
\begin{aligned}
& C=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{llll}
0 & 0 & 0 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

(2) (Problem 1.3 from Lec1)

Let $R=\left[r_{1}, r_{2}, \cdots, r_{m}\right]$ where r_{m} is the $m-$ th column vector of the $m \times m$ matrix R. Since R is upper-triangular, we know that the space spanned by the first n column of R is a subset of $C^{n} \times 0=\left\{\left.\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n} \\ 0 \\ \vdots \\ 0\end{array}\right) \right\rvert\, x_{1}, \cdots, x_{n} \in C\right\}$.

Using the fact that $\left\{r_{1}, \cdots, r_{n}\right\}$ is linearly independent, we conclude the subspace spanned by $\left\{r_{1}, \cdots, r_{n}\right\}$ is exactly $C^{n} \times 0$. In particular, $e_{j} \in \operatorname{span}\left\{r_{1}, \cdots, r_{j}\right\}$. We can find $a_{i j}$ such that $e_{j}=\sum_{i=1}^{j} a_{i j} r_{i}$. Note that $a_{i j}$ is defined only for $1 \leq i \leq j$. Let $z_{i j}=\left\{\begin{array}{ll}a_{i j} & 1 \leq i \leq j, \\ 0, & j<i \leq m\end{array}\right.$ By our construction, the matrix Z with entries $z_{i j}$ is upper-triangular and $Z R=I$. Hence $Z=R^{-1}$ and R^{-1} is also upper-triangular.
(3) (Problem 1.4 from Lec1)
(a) Let F be a 8×8 matrix where $F_{i j}=f_{j}(i)$. We have $F c=d$ where $c=$ $\left(c_{1}, \cdots, c_{8}\right)^{T}$ and $d=\left(d_{1}, \cdots, d_{8}\right)^{T}$. By our assumption, we have $\operatorname{range}(F)=C^{8}$. So F is invertible and $c=F^{-1} d$.
(b) We have $A d=c$ from the definition of A. Then $A=F^{-1}, A^{-1}=F$ and $A_{i j}^{-1}=F_{i j}=f_{j}(i)$.

