Lecture 23:Cholesky Factorization

March 28, 2008

1 Hermitian Positive Definite Matrix

Definition 1.1. A complex matrix $A \in C^{m \times m}$ is hermitian if $A^{*}=A\left(\bar{A}^{T}=A\right.$ or $\left.a_{i j}=\overline{a_{j i}}\right)$. A is said to be hermitian positive definite if $x^{*} A x>0$ for all $x \neq 0$.

Remark:

- A is hermitian positive definite if and only if it's eigenvalues are all positive. - If A is hermitian positive definite and $A=L U$ is the $L U$ decomposition of A then $u_{11}>0, u_{22}>0, \cdots, u_{m m}>0$.

This can be proved by the following steps.

1. A is hermitian positive definite then $\operatorname{det}\left(A_{k}\right)>0$ for $k=1, \cdots n$ where A_{k} is the $k \times k$ diagonal matrix of A, i.e. $A_{k}=\left(a_{i j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}$. If we write $L=\left[\begin{array}{cc}L_{k} & 0 \\ P & Q\end{array}\right]$ and $U=\left[\begin{array}{cc}U_{k} & R \\ 0 & S\end{array}\right]$ where $L_{k}=\left(l_{i j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}$ and $U_{k}=$ $\left(u_{i j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}$ then $A_{k}=L_{k} U_{k}$. Note that L_{k} is unit lower-triangular and $\operatorname{det}\left(L_{k}\right)=1$. Similarly, U_{k} is upper-triangular and $\operatorname{det}\left(U_{k}\right)=u_{11} u_{22} \cdots u_{k k}$. Therefore $\operatorname{det}\left(A_{k}\right)=\operatorname{det}\left(L_{k}\right) \operatorname{det}\left(U_{k}\right)=u_{11} u_{22} \cdots u_{k k}>0$ for $1 \leq \leq m$. So $u_{11}>0, u_{11} u_{22}>0, \cdots, u_{11} u_{22} \cdots u_{m m}>0$. This implies that $u_{11}>0$, $u_{22}>0, \cdots, u_{m m}>0$.

2 Cholesky Factorization

Definition 2.2. A complex matrix $A \in C^{m \times m}$ is has a Cholesky factorization if $A=R^{*} R$ where R is a upper-triangular matrix
Theorem 2.3. Every hermitian positive definite matrix A has a unique Cholesky factorization.

Proof: From the remark of previous section, we know that $A=L U$ where L is unit lower-triangular and U is upper-triangular with $u_{11}>0, u_{22}>0, \cdots$, $u_{m m}>0$. First, we factor U as
$U=\left[\begin{array}{ccccc}u_{11} & u_{12} & \cdots & u_{1 m-1} & u_{1 m} \\ 0 & u_{22} & \cdots & u_{2 m-1} & u_{2 m} \\ 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & u_{m-1 m-1} & u_{m-1 m} \\ 0 & 0 & \cdots & 0 & u_{m m}\end{array}\right]$

$$
=\left[\begin{array}{ccccc}
u_{11} & 0 & \cdots & 0 & 0 \\
0 & u_{22} & \cdots & 0 & 0 \\
0 & 0 & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & u_{m-1 m-1} & 0 \\
0 & 0 & \cdots & 0 & u_{m m}
\end{array}\right]\left[\begin{array}{ccccc}
1 & \frac{u_{12}}{u_{11}} & \cdots & \frac{u_{1 m-1}}{u_{1}} & \frac{u_{1 m}}{u_{11}} \\
0 & 1 & \cdots & \frac{u_{2 m-1}}{u_{22}} & \frac{u_{2 m}}{u_{22}} \\
0 & 0 & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & \frac{u_{m-1 m}}{u_{m-1 m-1}} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right]=\Lambda W .
$$

Since $u_{11}>0, \cdots, u_{m m}>0$, we can write $\Lambda=D^{2}$
where $D=\left[\begin{array}{ccccc}\sqrt{u_{11}} & 0 & \cdots & 0 & 0 \\ 0 & \sqrt{u_{22}} & \cdots & 0 & 0 \\ 0 & 0 & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \sqrt{u_{m-1 m-1}} & 0 \\ 0 & 0 & \cdots & 0 & \sqrt{u_{m} m}\end{array}\right]$.
So we have $A=L U=L \Lambda W=L D^{2} W$ where L is unit-triangular and W is unit upper-triangular. Since $A^{*}=A$, we have $L D^{2} W=\left(L D^{2} W\right)^{*}=$ $W^{*}\left(D^{2}\right)^{*} L^{*}=W^{*}\left(D^{2}\right) L^{*}$. Note that W^{*} is unit lower-triangular. By the uniqueness of $L U$ factorization, we have $L=W^{*}$. So $A=L D D L^{*}=(L D)(L D)^{*}$. Let $R=D L^{*}$. Then R is upper-triangular and $A=R^{*} R$.

Lemma 2.4. Suppose $A^{*} A$ is invertible. Then $A^{*} A=R^{*} R$ where R is uuppertriangular.

Proof: One can check easily that $A^{*} A$ is hermitian($b / c\left(A^{*} A\right)^{*}=A^{*}\left(A^{*}\right)^{*}=$ $\left.A^{*} A\right)$. Since $x^{*}\left(A^{*} A\right) x=(A x)^{*}(A x)=\|A x\|^{2} \geq 0$ and $x^{*}\left(A^{*} A\right) x=0$ if $A x=0$. Note that $A^{*} A$ is invertible. So $A x=0$ implies $A^{*} A x=0$ and $x=0$.

Algorithm for Cholesky Factorization for a Hermitian positive definite matrix

Step1. Find a LU decomposition of $A=L U$.
Step2. Factor $U=D^{2} W$ where W is a unit upper-triangular matrix and D is a diagonal matrix.

Step3. $A=R^{*} R$ where $R=D W$.
Example 2.5. Determine if the following matrix is hermitian positive definite. Also find its Cholessky factorization if possible.

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 3 & 3 \\
1 & 3 & 2
\end{array}\right], B=\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 8 & 0 \\
2 & 0 & 24
\end{array}\right]
$$

Solution:
(1) From the row reduction, we have the following.
$A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 3 \\ 1 & 3 & 2\end{array}\right]-2 r_{1}+\widetilde{r_{2},-r_{1}}+r_{3}\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & 1\end{array}\right] \widetilde{1 \cdot r_{2}+r_{3}}\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 2\end{array}\right]$.
So $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 2\end{array}\right]$
Now $u_{22}=-1<0$. So A is not positive definite.
(2) From the row reduction, we have the following.

$$
\begin{aligned}
& B=\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 8 & 0 \\
2 & 0 & 24
\end{array}\right]-2 r_{1}+\widetilde{r_{2},-2 r_{1}}+r_{3}\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 4 & -4 \\
0 & -4 & 20
\end{array}\right] \widetilde{1 \cdot r_{2}+r_{3}}\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 4 & -4 \\
0 & 0 & 16
\end{array}\right] . \\
& S o B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 4 & -4 \\
0 & 0 & 16
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 16
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] . \text { Since } u_{11}=1>0, u_{22}=4>0 \text { and }
\end{aligned}
$$

$u_{33}=16>0$, we know that B is positive definite.

$$
\text { So } R=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 2 & -2 \\
0 & 0 & 4
\end{array}\right] \text { and } B=R^{*} R
$$

3 Least square via Cholesky factorization

Recall that the solution of the least square problem $A x=b$ is the solution to $A^{*} A x=A^{*} b$. Assume that A has full rank. Then $A^{*} A$ is hermitian and positive definite. Then $A^{*} A=R^{*} R$ (the Cholesky factorization of $A^{*} A$) where R is upper-triangular. Then $A^{*} A x=A^{*} b \Longleftrightarrow R^{*} \underbrace{R x}_{y}=A^{*} b$
$\Longleftrightarrow R^{*} y=A^{*} b$ and $R x=y$.

Algorithm: Least Squares via Cholesky factorization

1. Compute $A^{*} A$
2. Find the Cholesky factorization of $A^{*} A=R^{*} R$.
3. Solve the lower-triangular system $R^{*} y=A^{*} b$
4. Solve the upper-triangular system $R x=y$ for x.

Example 3.6. Use Cholesky factorization to find the solution to the least square
problem $\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}2 \\ 1 \\ 1 \\ -2\end{array}\right]$
Solution:

1. Compute $A^{*} A=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ -1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1\end{array}\right]=\left[\begin{array}{ccc}2 & -2 & 0 \\ -2 & 4 & -2 \\ 0 & -2 & 4\end{array}\right]$.

$$
\begin{aligned}
& \text { 2. From the row reduction, we have the following. } \\
& A^{*} A=\left[\begin{array}{ccc}
2 & -2 & 0 \\
-2 & 4 & -2 \\
0 & -2 & 4
\end{array}\right] \widetilde{r_{1}+r_{2}}\left[\begin{array}{ccc}
2 & -2 & 0 \\
0 & 2 & -2 \\
0 & -2 & 4
\end{array}\right] \widetilde{1 \cdot r_{2}+r_{3}}\left[\begin{array}{ccc}
2 & -2 & 0 \\
0 & 2 & -2 \\
0 & 0 & 2
\end{array}\right] . \\
& \text { So } A^{*} A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & -2 & 0 \\
0 & 2 & -2 \\
0 & 0 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2}
\end{array}\right]^{2}\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] \\
& \text { So } R=\left[\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2}
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
\sqrt{2} & -\sqrt{2} & 0 \\
0 & \sqrt{2} & -\sqrt{2} \\
0 & 0 & \sqrt{2}
\end{array}\right] \text { and } \\
& A^{*} A=R^{*} R . \\
& \text { Compute } A^{*}\left[\begin{array}{c}
2 \\
1 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right] \text {. } \\
& \text { Now solve } R^{*} y=A^{*}\left[\begin{array}{c}
2 \\
1 \\
1 \\
-2
\end{array}\right] \\
& \begin{array}{l}
\stackrel{\Longleftrightarrow}{\sqrt{2}} \\
{\left[\begin{array}{ccc}
0 & 0 \\
-\sqrt{2} & \sqrt{2} & 0 \\
0 & -\sqrt{2} & \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right]}
\end{array} \\
& \Longleftrightarrow y_{1}=\frac{1}{\sqrt{2}}, y_{2}=\frac{-2+\sqrt{2} y_{1}}{\sqrt{2}}=-\frac{1}{\sqrt{2}} \text { and } y_{3}=\frac{4+\sqrt{2} y_{2}}{\sqrt{2}}=\frac{3}{\sqrt{2}} \\
& \text { Last, we solve } R x=y \\
& \Longleftrightarrow\left[\begin{array}{ccc}
\sqrt{2} & -\sqrt{2} & 0 \\
0 & \sqrt{2} & -\sqrt{2} \\
0 & 0 & \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} \\
\frac{3}{\sqrt{2}}
\end{array}\right] \\
& \Longleftrightarrow x_{3}=\frac{3}{2}, x_{2}=\frac{-\frac{1}{\sqrt{2}}+\sqrt{2} x_{3}}{\sqrt{2}}=1 \text { and } x_{1}=\frac{\frac{1}{\sqrt{2}}+\sqrt{2} x_{2}}{\sqrt{2}}=\frac{3}{2} \text {. } \\
& \text { Hence the solution is } x=\left[\begin{array}{c}
\frac{3}{2} \\
1 \\
\frac{3}{2}
\end{array}\right] \text {. }
\end{aligned}
$$

Homework 11: Due April 4

1. Determine if the following matrix is hermitian positive definite. Also find its Cholessky factorization if possible.

$$
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 8 & -14 \\
1 & -14 & 28
\end{array}\right], B=\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 8 & -14 \\
1 & -14 & 46
\end{array}\right]
$$

b.Use Cholesky factorization to find the solution to the least square problem
$\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}1 \\ 1 \\ 1 \\ -1\end{array}\right]$.

