
Lecture 23:Cholesky Factorization

March 28, 2008

1 Hermitian Positive Definite Matrix

Definition 1.1. A complex matrix A ∈ Cm×m is hermitian if A∗ = A ( A
T

= A
or aij = aji). A is said to be hermitian positive definite if x∗Ax > 0 for all
x 6= 0.

Remark:
• A is hermitian positive definite if and only if it’s eigenvalues are all positive.
• If A is hermitian positive definite and A = LU is the LU decomposition of A
then u11 > 0, u22 > 0, · · · , umm > 0.

This can be proved by the following steps.
1. A is hermitian positive definite then det(Ak) > 0 for k = 1, · · ·n where

Ak is the k × k diagonal matrix of A, i.e. Ak = (aij)1≤i≤k,1≤j≤k. If we write

L =
[
Lk 0
P Q

]
and U =

[
Uk R
0 S

]
where Lk = (lij)1≤i≤k,1≤j≤k and Uk =

(uij)1≤i≤k,1≤j≤k then Ak = LkUk. Note that Lk is unit lower-triangular and
det(Lk) = 1. Similarly, Uk is upper-triangular and det(Uk) = u11u22 · · ·ukk.
Therefore det(Ak) = det(Lk)det(Uk) = u11u22 · · ·ukk > 0 for 1 ≤≤ m. So
u11 > 0, u11u22 > 0, · · · , u11u22 · · ·umm > 0. This implies that u11 > 0,
u22 > 0, · · · , umm > 0.

2 Cholesky Factorization

Definition 2.2. A complex matrix A ∈ Cm×m is has a Cholesky factorization
if A = R∗R where R is a upper-triangular matrix

Theorem 2.3. Every hermitian positive definite matrix A has a unique Cholesky
factorization.

Proof: From the remark of previous section, we know that A = LU where L
is unit lower-triangular and U is upper-triangular with u11 > 0, u22 > 0, · · · ,
umm > 0. First, we factor U as

U =


u11 u12 · · · u1m−1 u1m

0 u22 · · · u2m−1 u2m

0 0 · · · · · · · · ·
0 0 · · · um−1m−1 um−1m

0 0 · · · 0 umm
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=


u11 0 · · · 0 0
0 u22 · · · 0 0
0 0 · · · · · · · · ·
0 0 · · · um−1m−1 0
0 0 · · · 0 umm




1 u12
u11

· · · u1m−1
u11

u1m

u11

0 1 · · · u2m−1
u22

u2m

u22

0 0 · · · · · · · · ·
0 0 · · · 1 um−1m

um−1m−1

0 0 · · · 0 1

 = ΛW .

Since u11 > 0, · · · , umm > 0, we can write Λ = D2

where D =


√

u11 0 · · · 0 0
0

√
u22 · · · 0 0

0 0 · · · · · · · · ·
0 0 · · · √

um−1m−1 0
0 0 · · · 0

√
umm

.

So we have A = LU = LΛW = LD2W where L is unit-triangular and
W is unit upper-triangular. Since A∗ = A, we have LD2W = (LD2W )∗ =
W ∗(D2)∗L∗ = W ∗(D2)L∗. Note that W ∗ is unit lower-triangular. By the
uniqueness of LU factorization, we have L = W ∗. So A = LDDL∗ = (LD)(LD)∗.
Let R = DL∗. Then R is upper-triangular and A = R∗R.

Lemma 2.4. Suppose A∗A is invertible. Then A∗A = R∗R where R is uupper-
triangular.

Proof: One can check easily that A∗A is hermitian( b/c (A∗A)∗ = A∗(A∗)∗ =
A∗A). Since x∗(A∗A)x = (Ax)∗(Ax) = ||Ax||2 ≥ 0 and x∗(A∗A)x = 0 if
Ax = 0. Note that A∗A is invertible. So Ax = 0 implies A∗Ax = 0 and x = 0.

Algorithm for Cholesky Factorization for a Hermitian positive def-
inite matrix

Step1. Find a LU decomposition of A = LU .
Step2. Factor U = D2W where W is a unit upper-triangular matrix and D

is a diagonal matrix.
Step3. A = R∗R where R = DW .

Example 2.5. Determine if the following matrix is hermitian positive definite.
Also find its Cholessky factorization if possible.

A =


1 2 1

2 3 3

1 3 2

, B =


1 2 2

2 8 0

2 0 24

.

Solution:
(1) From the row reduction, we have the following.

A =


1 2 1

2 3 3

1 3 2

 ˜−2r1 + r2,−r1 + r3

1 2 1
0 −1 1
0 1 1

 ˜1 · r2 + r3

1 2 1
0 −1 1
0 0 2

.

So A =

1 0 0
2 1 0
1 −1 1

1 2 1
0 −1 1
0 0 2


Now u22 = −1 < 0. So A is not positive definite.

2



(2) From the row reduction, we have the following.

B =


1 2 2

2 8 0

2 0 24

 ˜−2r1 + r2,−2r1 + r3

1 2 2
0 4 −4
0 −4 20

 ˜1 · r2 + r3

1 2 2
0 4 −4
0 0 16

.

So B =

1 0 0
2 1 0
2 −1 1

1 2 2
0 4 −4
0 0 16

 =

1 0 0
2 1 0
2 −1 1

1 0 0
0 4 0
0 0 16

1 2 2
0 1 −1
0 0 1


=

1 0 0
2 1 0
2 −1 1

1 0 0
0 2 0
0 0 4

2 1 2 2
0 1 −1
0 0 1

. Since u11 = 1 > 0, u22 = 4 > 0 and

u33 = 16 > 0, we know that B is positive definite.

So R =

1 0 0
0 2 0
0 0 4

1 2 2
0 1 −1
0 0 1

 =

1 2 2
0 2 −2
0 0 4

 and B = R∗R

3 Least square via Cholesky factorization

Recall that the solution of the least square problem Ax = b is the solution
to A∗Ax = A∗b. Assume that A has full rank. Then A∗A is hermitian and
positive definite. Then A∗A = R∗R (the Cholesky factorization of A∗A) where
R is upper-triangular. Then A∗Ax = A∗b ⇐⇒ R∗ Rx︸︷︷︸

y

= A∗b

⇐⇒ R∗y = A∗b and Rx = y.
Algorithm: Least Squares via Cholesky factorization

1. Compute A∗A
2. Find the Cholesky factorization of A∗A = R∗R.
2. Solve the lower-triangular system R∗y = A∗b
3. Solve the upper-triangular system Rx = y for x.

Example 3.6. Use Cholesky factorization to find the solution to the least square

problem


1 −1 1

−1 1 1

0 1 −1

0 1 −1


x1

x2

x3

 =


2
1
1
−2


Solution:

1. Compute A∗A =


1 −1 0 0

−1 1 1 1

1 1 −1 −1




1 −1 1

−1 1 1

0 1 −1

0 1 −1

 =


2 −2 0

−2 4 −2

0 −2 4

 .
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2. From the row reduction, we have the following.

A∗A =


2 −2 0

−2 4 −2

0 −2 4

 r̃1 + r2


2 −2 0

0 2 −2

0 −2 4

 ˜1 · r2 + r3


2 −2 0

0 2 −2

0 0 2

.

So A∗A =


1 0 0

−1 1 0

0 −1 1




2 −2 0

0 2 −2

0 0 2

 =


1 0 0

−1 1 0

0 −1 1



√

2 0 0

0
√

2 0

0 0
√

2


2 

1 −1 0

0 1 −1

0 0 1



So R =


√

2 0 0

0
√

2 0

0 0
√

2




1 −1 0

0 1 −1

0 0 1

 =


√

2 −
√

2 0

0
√

2 −
√

2

0 0
√

2

 and

A∗A = R∗R.

Compute A∗


2
1
1
−2

 =


1 −1 0 0

−1 1 1 1

1 1 −1 −1




2
1
1
−2

 =


1

−2

4

.

Now solve R∗y = A∗


2
1
1
−2


⇐⇒
√

2 0 0

−
√

2
√

2 0

0 −
√

2
√

2


y1

y2

y3

 =


1

−2

4


⇐⇒ y1 = 1√

2
, y2 = −2+

√
2y1√

2
= − 1√

2
and y3 = 4+

√
2y2√
2

= 3√
2

Last, we solve Rx = y

⇐⇒


√

2 −
√

2 0

0
√

2 −
√

2

0 0
√

2


x1

x2

x3

 =


1√
2

− 1√
2

3√
2


⇐⇒ x3 = 3

2 , x2 =
− 1√

2
+
√

2x3
√

2
= 1 and x1 =

1√
2
+
√

2x2
√

2
= 3

2 .

Hence the solution is x =

 3
2
1
3
2

.
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Homework 11: Due April 4
1. Determine if the following matrix is hermitian positive definite. Also find

its Cholessky factorization if possible.

A =


1 −2 1

−2 8 −14

1 −14 28

, B =


1 −2 1

−2 8 −14

1 −14 46

.

b.Use Cholesky factorization to find the solution to the least square problem
−1 1 1

1 −1 1

0 1 −1

0 1 −1


x1

x2

x3

 =


1
1
1
−1

 .
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