Lecture 20:Gaussian Elimination

March 21, 2008

1 LU Factorization

First, let us review some results about lower-triangular matrices.

- If L is lower-triangular then L^{-1} is lower-triangular.
- If L_{1} and L_{2} are lower-triangular then $L_{1} \cdot L_{2}$ is also lower-triangular.

Let A be an $m \times m$ matrix. We can find a sequence of lower-triangular matrices L_{k} on the left such that

$$
L_{m-1} \cdots L_{2} L_{1} A=U
$$

where U is an upper-triangular matrix. Thus we have $A=L_{1}^{-1} \cdots L_{m-1}^{-1} U$. Let $L=L_{1}^{-1} \cdots L_{m-1}^{-1}$. Then $L=L_{1}^{-1} \cdots L_{m-1}^{-1}$ is lower-triangular from the properties of lower-triangular matrices and $A=L U$ where L is lower-triangular and U is upper-triangular.

Let us recall some results about the row operation of a matrix. In $L U$ decomposition, we only consider the following row operation.

- A multiple of one row is added to another row.

Let us represent it as a multiplication of matrix. Consider the case where we multiply c to $i-t h$ row and add it to $j-t h$ row.

Let's look at the case of a 3 matrix.
We consider the following two cases.
First Case:
Let $A=\left[\begin{array}{l}r_{1} \\ r_{2} \\ r_{3}\end{array}\right]$ and B be the matrix obtained by the following two operations:
(1) Multiplying c_{1} to the first row and add it to the second row
(2) Multiplying c_{2} to the first row and add it to the third row.

So we have $B=\left[\begin{array}{c}r_{1} \\ c_{1} r_{1}+r_{2} \\ c_{2} r_{1}+r_{3}\end{array}\right]$. We can factor B into two matrix to get
$\left[\begin{array}{lll}1 & 0 & 0 \\ c_{1} & 1 & 0 \\ c_{2} & 0 & 1\end{array}\right]\left[\begin{array}{l}r_{1} \\ r_{2} \\ r_{3}\end{array}\right]=\left[\begin{array}{c}r_{1} \\ c_{1} r_{1}+r_{2} \\ c_{2} r_{1}+r_{3}\end{array}\right]=B$

Let $L_{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ c_{1} & 1 & 0 \\ c_{2} & 0 & 1\end{array}\right]$. Then one can verify easily that $L_{1}^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -c_{1} & 1 & 0 \\ -c_{2} & 0 & 1\end{array}\right]$.
(We have $\left[\begin{array}{ccc}1 & 0 & 0 \\ -c_{1} & 1 & 0 \\ -c_{2} & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ c_{1} & 1 & 0 \\ c_{2} & 0 & 1\end{array}\right]=I$.)

Second Case:

Let $A=\left[\begin{array}{l}r_{1} \\ r_{2} \\ r_{3}\end{array}\right]$ and C be the matrix obtained by the following operation:
Multiplying c_{3} to the second row and add it to the third row.
So we have $C=\left[\begin{array}{c}r_{1} \\ r_{2} \\ c_{3} r_{2}+r_{3}\end{array}\right]$. We can factor C into two matrix to get
$\left[\begin{array}{lcc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c_{3} & 1\end{array}\right]\left[\begin{array}{l}r_{1} \\ r_{2} \\ r_{3}\end{array}\right]=\left[\begin{array}{c}r_{1} \\ r_{2} \\ c_{3} r_{2}+r_{3}\end{array}\right]=C$.
Let $L_{2}=\left[\begin{array}{lcc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c_{3} & 1\end{array}\right]$. Then one can verify easily that $L_{2}^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c_{3} & 1\end{array}\right]$.
(We have $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & c_{3} & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c_{3} & 1\end{array}\right]=I$.)
Note that we also have $L_{1}^{-1} L_{2}^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -c_{1} & 1 & 0 \\ -c_{2} & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c_{3} & 1\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -c_{1} & 1 & 0 \\ -c_{2} & -c_{3} & 1\end{array}\right]$.
Example 1.1. Let $A=\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 2 & -1 \\ 4 & -1 & 6\end{array}\right]$.
We can perform row reduction to A to get a $L U$ decomposition of A. We only consider the following row operation.

- A multiple of one row is added to another row.

We will provide two methods to find the $L U$ decomposition.

- First Method

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 2 & -1 \\
4 & -1 & 6
\end{array}\right](-1) r_{1}+\widetilde{r_{2},-2 r_{1}}+r_{3}\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 1 & -2 \\
0 & -3 & 4
\end{array}\right] \widetilde{3 r_{2}+r_{3}}\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 1 & -2 \\
0 & 0 & -2
\end{array}\right] .
$$

We can express this process in terms of matrix factorization.
The first step we have $\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 1 \\ 2 & 2 & -1 \\ 4 & -1 & 6\end{array}\right]=\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & -3 & 4\end{array}\right]$.
The second step we have $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & -3 & 4\end{array}\right]=\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & -2\end{array}\right]$.

Combining these two steps, we get

$$
\underbrace{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]}_{L_{1}} \underbrace{\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]}_{L_{2}} \underbrace{\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 2 & -1 \\
4 & -1 & 6
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 1 & -2 \\
0 & 0 & -2
\end{array}\right]}_{U} .
$$

So $L_{1} L_{2} A=U$ and
$A=L_{2}^{-1} L_{1}^{-1} U=\underbrace{\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1\end{array}\right]}_{L_{2}^{-1}} \underbrace{\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1\end{array}\right]}_{L_{1}^{-1}} \underbrace{\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & -2\end{array}\right]}_{U}=\underbrace{\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 1\end{array}\right]}_{L} \underbrace{\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & -2\end{array}\right]}_{U}$.
Thus we get the $L U$ decomposition of A with $A=L U$ where $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 1\end{array}\right]$
is lower-triangular and $U=\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & -2\end{array}\right]$ is upper-triangular.

- Second Method

From the row reduction, we have the following.

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 2 & -1 \\
4 & -1 & 6
\end{array}\right](-1) r_{1}+\widetilde{r_{2},-2 r_{1}}+r_{3}\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 1 & -2 \\
0 & -3 & 4
\end{array}\right] \widetilde{3 r_{2}+r_{3}}\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 1 & -2 \\
0 & 0 & -2
\end{array}\right] .
$$

Now, we collect the first row $\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right]$ from the first matrix, the second row $\left[\begin{array}{c}1 \\ 1 \\ -3\end{array}\right]$
from the second matrix and the third row $\left[\begin{array}{c}1 \\ -2 \\ -2\end{array}\right]$ from the third matrix.
First put these three column vectors in a matrix

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 1 & -2 \\
4 & -3 & -2
\end{array}\right]
$$

Now take the lower-triangular part of the matrix to get

$$
\left[\begin{array}{ccc}
2 & 0 & 0 \\
2 & 1 & 0 \\
\underbrace{4}_{\text {divideby } 2} & \underbrace{-3}_{\text {divideby } 2} & \underbrace{-2}_{\text {divideby }-2}
\end{array}\right]
$$

Next divide each column vector by its diagonal entry. In this case, divide the first column by 2, divide the second column by 1 and divide the third column by -2. We get

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & -3 & 1
\end{array}\right]
$$

Example 1.2. Find the $L U$ decomposition of $A=\left[\begin{array}{cccc}4 & -2 & 4 & 2 \\ -2 & 10 & -2 & -7 \\ 4 & -2 & 8 & 4 \\ 2 & -7 & 4 & 7\end{array}\right]$. From the row reduction, we have the following.
$\left[\begin{array}{cccc}4 & -2 & 4 & 2 \\ -2 & 10 & -2 & -7 \\ 4 & -2 & 8 & 4 \\ 2 & -7 & 4 & 7\end{array}\right]\left(\frac{1}{2}\right) r_{1}+r_{2},-r_{1}+r_{3},-\left(\frac{1}{2}\right) r_{1}+r_{4}\left[\begin{array}{cccc}4 & -2 & 4 & 2 \\ 0 & 9 & 0 & -6 \\ 0 & 0 & 4 & 2 \\ 0 & -6 & 2 & 6\end{array}\right]$
$\widetilde{\left(\frac{6}{9}\right) r_{2}+r 4}\left[\begin{array}{cccc}4 & -2 & 4 & 2 \\ 0 & 9 & 0 & -6 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 2 & 2\end{array}\right]\left(-\frac{2}{4}\right) r_{3}+r_{4}\left[\begin{array}{cccc}4 & -2 & 4 & 2 \\ 0 & 9 & 0 & -6 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$
Now collect the $i-t h$ vector form $i-t h$ process.
We get $\left[\begin{array}{cccc}4 & -2 & 4 & 2 \\ -2 & 9 & 0 & -6 \\ 4 & 0 & 4 & 2 \\ 2 & -6 & 2 & 1\end{array}\right]$. Now take the lower-triangular part.
We get $\left[\begin{array}{cccc}4 & 0 & 0 & 0 \\ -2 & 9 & 0 & 0 \\ 4 & 0 & 4 & 0 \\ 2 & -6 & 2 & 1\end{array}\right]$. Now divide each column vector by the diagonal ele-
ment. We get $L=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ \frac{-1}{2} & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ \frac{1}{2} & -\frac{2}{3} & \frac{1}{2} & 1\end{array}\right]$.
Thus $A=L U$ where $L=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ \frac{-1}{2} & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ \frac{1}{2} & -\frac{2}{3} & \frac{1}{2} & 1\end{array}\right]$ and $U=\left[\begin{array}{cccc}4 & -2 & 4 & 2 \\ 0 & 9 & 0 & -6 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$.

2 Uniqueness of LU decomposition

We will show that the LU decomposition a matrix is unique. First, let us review the following important properties of triangular matrices.

- Suppose U_{1} and U_{2} are upper(lower)-triangular. Then $U_{1} U_{2}$ is also upper(lower)triangular.
- Suppose U is upper(lower)-triangular. Then U^{-1} is also upper(lower)-triangular.

Definition 2.3. A lower-triangular matrix L is called unit lower-triangular if $\operatorname{diag}(L)=I$, i.e. its diagonal elements are all 1 .

Lemma 2.4. Suppose A is both upper-triangular and lower-triangular with $\operatorname{diag}(A)=I$. Then $A=I$

Theorem 2.5. Uniqueness of $\mathbf{L U}$ decomposition Let A be an invertible matrix. Suppose $A=L_{1} U_{1}=L_{2} U_{2}$ where L_{1}, L_{2} are lower-triangular and U_{1}, U_{2} are upper-triangular.
Proof. Since $L_{1} U_{1}=L_{2} U_{2}$, we have $L_{2}^{-1} L_{1} U_{1}=U_{2}$ and $L_{2}^{-1} L_{1}=U_{2} U_{1}^{-1}$. Recall that $\operatorname{diag}\left(L_{1}\right)=\operatorname{diag}\left(L_{2}^{-1}\right)=I$. So $\operatorname{diag}\left(L_{2}^{-1} L_{1}\right)=I$. Moreover, $L_{2}^{-1} L_{1}$ is both upper-triangular and lower-triangular. This implies that $L_{2}^{-1} L_{1}=I$. So $L_{1}=L_{2}$. Similarly, we have $U_{2} U_{1}^{-1}=I$. So $U_{1}=U_{2}$

3 Use LU decomposition to solve $A x=b$

Suppose $A=L U$ is the $L U$ decomposition of a $m \times m$ matrix A with $\operatorname{rank}(A)=$ m. Then $A x=b$ can be solved in the following way.
$A x=b \Longleftrightarrow L \underbrace{U x}_{y}=b \Longleftrightarrow L y=b$ and $U x=y$

Algorithm:

Solving $A x=b$ via $L U$ Factorization where A is nonsingular

1. Find the $L U$ Factorization $A=L U$.
2. Solve the triangular system $L y=b$
3. Solve the triangular system $U x=y$ to find x.

Example 3.6. Use $L U$ decomposition to solve $A x=\left[\begin{array}{c}1 \\ 6 \\ -9\end{array}\right]$ where $A=$

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & 2 & -1 \\
4 & -1 & 6
\end{array}\right] .
$$

Solution:
Step 1. LU decomposition.
From example 1.1, we have the $L U$ decomposition of $A=L U$ where $L=$ $\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 1\end{array}\right]$ and $U=\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & -2\end{array}\right]$.

Step 2. Solve $L y=b \Longleftrightarrow\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 1\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{c}1 \\ 6 \\ -9\end{array}\right]$
$\left\{\begin{array}{c}y_{1}=1 \\ y_{1}+y_{2}=6 \\ 2 y_{1}-3 y_{2}+y_{3}=-9\end{array} \Longleftrightarrow\left\{\begin{array}{c}y_{1}=1 \\ y_{2}=6-y_{1}=6-1=5 \\ y_{3}=-9-2 y_{1}+3 y_{2}=-9-2+3 \cdot 5=4\end{array}\right.\right.$
So $y=\left[\begin{array}{l}1 \\ 5 \\ 4\end{array}\right]$.
Step 3. Solve $U x=y \Longleftrightarrow\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 5 \\ 4\end{array}\right]$

$$
\begin{aligned}
& \quad\left\{\begin{array}{c}
-2 x_{3}=4 \\
x_{2}-2 x_{3}=5 \\
2 x_{1}+x_{2}+x_{3}=1
\end{array}\right. \\
& \text { So } x=\left[\begin{array}{c}
x_{3}=\frac{4}{-2}=-2 \\
x_{2}=5+2 x_{3}=5-4=1 \\
x_{1}=\frac{1-x_{2}-x_{3}}{2}=\frac{1-(1)-(-2)}{2}=1 \\
1 \\
-2
\end{array}\right] .
\end{aligned}
$$

Homework 10: Due March 28

1. a. Find the $L U$ decomposition of $A=\left[\begin{array}{cccc}2 & 4 & 2 & 3 \\ -2 & -5 & -3 & -2 \\ 4 & 7 & 6 & 8 \\ 6 & 10 & 1 & 12\end{array}\right]$
b. Use $L U$ decomposition to solve $A x=\left[\begin{array}{c}-3 \\ 3 \\ -1 \\ -16\end{array}\right]$
