1.1 EXERCISES

Solve each system in Exercises $1-4$ by using elementary row operations on the equations or on the augmented matrix. Follow the systematic elimination procedure described in this section.

1. $x_{1}+5 x_{2}=7$
$-2 x_{1}-7 x_{2}=-5$
2. $2 x_{1}+4 x_{2}=-4$
$5 x_{1}+7 x_{2}=11$
3. Find the point $\left(x_{1}, x_{2}\right)$ that lies on the line $x_{1}+5 x_{2}=7$ and on the line $x_{1}-2 x_{2}=-2$. See the figure.

4. Find the point of intersection of the lines $x_{1}-5 x_{2}=1$ and $3 x_{1}-7 x_{2}=5$.

Consider each matrix in Exercises 5 and 6 as the augmented matrix of a linear system. State in words the next two elementary row operations that should be performed in the process of solving the system.
5. $\left[\begin{array}{rrrrr}1 & -4 & 5 & 0 & 7 \\ 0 & 1 & -3 & 0 & 6 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -5\end{array}\right]$
6. $\left[\begin{array}{rrrrr}1 & -6 & 4 & 0 & -1 \\ 0 & 2 & -7 & 0 & 4 \\ 0 & 0 & 1 & 2 & -3 \\ 0 & 0 & 3 & 1 & 6\end{array}\right]$

In Exercises 7-10, the augmented matrix of a linear system has been reduced by row operations to the form shown. In each case, continue the appropriate row operations and describe the solution set of the original system.
7. $\left[\begin{array}{rrrr}1 & 7 & 3 & -4 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$
8. $\left[\begin{array}{rrrr}1 & -4 & 9 & 0 \\ 0 & 1 & 7 & 0 \\ 0 & 0 & 2 & 0\end{array}\right]$
9. $\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & -4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 2 & 4\end{array}\right]$
10. $\left[\begin{array}{rrrrr}1 & -2: & 0 & 3 & -2 \\ 0 & 1 & 0 & -4 & 7 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & -3\end{array}\right]$

Solve the systems in Exercises 11-14.
11. $x_{2}+4 x_{3}=-5$
$x_{1}+3 x_{2}+5 x_{3}=-2$
$3 x_{1}+7 x_{2}+7 x_{3}=6$
12. $x_{1}-3 x_{2}+4 x_{3}=-4$
$3 x_{1}-7 x_{2}+7 x_{3}=-8$
$-4 x_{1}+6 x_{2}-x_{3}=7$
13. $\begin{aligned} x_{1}-3 x_{3} & =8 & \text { 14. } & x_{1}-3 x_{2} \\ 2 x_{1}+2 x_{2}+9 x_{3} & =7 & -x_{1}+x_{2}+5 x_{3} & =2 \\ x_{2}+5 x_{3} & =-2 & & x_{2}+x_{3}\end{aligned}=0$

Determine if the systems in Exercises 15 and 16 are consistent.
Do not completely solve the systems.
15. $\begin{aligned} & x_{1}+3 x_{3}=2 \\ & x_{2}-3 x_{4}=3 \\ &-2 x_{2}+3 x_{3}+2 x_{4}=1 \\ & 3 x_{1}+7 x_{4}=-5 \\ & \text { 16. } \begin{aligned} x_{1}-2 x_{4} & =-3 \\ 2 x_{2}+2 x_{3} & =0 \\ x_{3}+3 x_{4} & =1 \\ -2 x_{1}+3 x_{2}+2 x_{3}+x_{4} & =5\end{aligned} \text { 居 }\end{aligned}$
17. Do the three lines $x_{1}-4 x_{2}=1,2 x_{1}-x_{2}=-3$, and $-x_{1}-3 x_{2}=4$ have a common point of intersection? Explain.
18. Do the three planes $x_{1}+2 x_{2}+x_{3}=4, x_{2}-x_{3}=1$, and $x_{1}+3 x_{2}=0$ have at least one common point of intersection? Explain.

In Exercises 19-22, determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system.

1.1 EXERCISES

Solve each system in Exercises $1-4$ by using elementary row operations on the equations or on the augmented matrix. Follow the systematic elimination procedure described in this section.

1. $x_{1}+5 x_{2}=7$
$-2 x_{1}-7 x_{2}=-5$
2. $2 x_{1}+4 x_{2}=-4$
$5 x_{1}+7 x_{2}=11$
3. Find the point $\left(x_{1}, x_{2}\right)$ that lies on the line $x_{1}+5 x_{2}=7$ and on the line $x_{1}-2 x_{2}=-2$. See the figure.

4. Find the point of intersection of the lines $x_{1}-5 x_{2}=1$ and $3 x_{1}-7 x_{2}=5$.

Consider each matrix in Exercises 5 and 6 as the augmented matrix of a linear system. State in words the next two elementary row operations that should be performed in the process of solving the system.
5. $\left[\begin{array}{rrrrr}1 & -4 & 5 & 0 & 7 \\ 0 & 1 & -3 & 0 & 6 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & -5\end{array}\right]$
6. $\left[\begin{array}{rrrrr}1 & -6 & 4 & 0 & -1 \\ 0 & 2 & -7 & 0 & 4 \\ 0 & 0 & 1 & 2 & -3 \\ 0 & 0 & 3 & 1 & 6\end{array}\right]$

In Exercises 7-10, the augmented matrix of a linear system has been reduced by row operations to the form shown. In each case, continue the appropriate row operations and describe the solution set of the original system.
7. $\left[\begin{array}{rrrr}1 & 7 & 3 & -4 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -2\end{array}\right]$
8. $\left[\begin{array}{rrrr}1 & -4 & 9 & 0 \\ 0 & 1 & 7 & 0 \\ 0 & 0 & 2 & 0\end{array}\right]$
9. $\left[\begin{array}{rrrrr}1 & -1 & 0 & 0 & -4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 2 & 4\end{array}\right]$
10. $\left[\begin{array}{rrrrr}1 & -2 & 0 & 3 & -2 \\ 0 & 1 & 0 & -4 & 7 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & -3\end{array}\right]$

Solve the systems in Exercises 11-14.
11. $x_{2}+4 x_{3}=-5$
$x_{1}+3 x_{2}+5 x_{3}=-2$
$3 x_{1}+7 x_{2}+7 x_{3}=6$
12. $x_{1}-3 x_{2}+4 x_{3}=-4$
$3 x_{1}-7 x_{2}+7 x_{3}=-8$
$-4 x_{1}+6 x_{2}-x_{3}=7$
13. $x_{1}-3 x_{3}=8$
$2 x_{1}+2 x_{2}+9 x_{3}=7$ $x_{2}+5 x_{3}=-2$
14. $x_{1}-3 x_{2}=5$
$-x_{1}+x_{2}+5 x_{3}=2$
$x_{2}+x_{3}=0$
Determine if the systems in Exercises 15 and 16 are consistent.
Do not completely solve the systems.

17. Do the three lines $x_{1}-4 x_{2}=1,2 x_{1}-x_{2}=-3$, and $-x_{1}-3 x_{2}=4$ have a common point of intersection? Explain.
18. Do the three planes $x_{1}+2 x_{2}+x_{3}=4, x_{2}-x_{3}=1$, and $x_{1}+3 x_{2}=0$ have at least one common point of intersection? Explain.

In Exercises 19-22, determine the value(s) of h such that the matrix is the augmented matrix of a consistent linear system.

