5.1,5.2,5.3 Eigenvalues, Eigenvectors and Diagonalization

Definition 0.1 Let A be a $n \times n$ matrix. A scalar λ such that $A x=\lambda x$ for some $x \neq 0$ is called an eigenvalue and the corresponding vector is called an eigenvector.

From the definition, we know that λ is an eigenvalue if and only if there is $x \neq 0$ such that $(A-\lambda I) x=0$. The set of solutions is called the eigenspace corresponding to eigenvalue λ. We know that eigenspace corresponding to eigenvalue $\lambda=\operatorname{Nul}(A-\lambda I)=\{x \mid(A-\lambda I) x=0\}$.

Since $(A-\lambda I) x=0$ has nonzero solution, we know that $A-\lambda I$ is not invertible. Therefore $\operatorname{det}(A-\lambda I)=0$. So we have the following.

Theorem 0.1λ is an eigenvalue of A iff $\operatorname{det}(A-\lambda I)=0$ (this is called the characteristic polynomial).

In the following, we will discuss the diagonalization of a matrix.
Definition 0.2 $A n \times n$ matrix A is diagonizable if $A=P D P^{-1}$ where P is invertible and D is diagonal.

If a matrix is diagonizable then we can find the power of A easily.
First, we can show that if D is diagonal, i.e. $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$
then $D^{k}=\left[\begin{array}{cccc}\lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}^{k}\end{array}\right]$.
Example 1 Let $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$. Then $D^{k}=\left[\begin{array}{cc}2^{k} & 0 \\ 0 & 3^{k}\end{array}\right]$
Let $E=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -5\end{array}\right]$. Then $E^{k}=\left[\begin{array}{ccc}2^{k} & 0 & 0 \\ 0 & 3^{k} & 0 \\ 0 & 0 & (-5)^{k}\end{array}\right]$
If A is diagonizable then we have $A=P D P^{-1}$.
So $A^{2}=A A=P D P^{-1} P D P^{-1}=P D I D P^{-1}=P D^{2} P^{-1}$ and $A^{k}=P D^{k} P^{-1}$. Then we have the following result.

Theorem 0.2 Suppose $A=P D P^{-1}$. Then $A^{k}=P D^{k} P^{-1}$.
Next we will discuss the relation between eigenvalues, eigenvectors and diagonalization of a matrix.

Suppose we have n independent eigenvectors $v_{1}, v_{2}, \cdots, v_{n}$ corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. This implies that $A v_{1}=\lambda_{1} v_{1}, A v_{2}=\lambda_{2} v_{2}$, $\cdots, A v_{n}=\lambda_{n} v_{n}$. Let P be a $n \times n$ matrix with columns $v_{1}, v_{2}, \cdots, v_{n}$, i.e. $P=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$ and D be the diagonal matrix with diagonal entries λ_{1}, $\lambda_{2}, \cdots, \lambda_{n}$, i.e. $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$.
Then $A P=A\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]=\left[\begin{array}{llll}A v_{1} & A v_{2} \cdots & \cdots v_{n}\end{array}\right]=\left[\begin{array}{llll}\lambda_{1} v_{1} & \lambda_{2} v_{2} & \cdots & \lambda_{n} v_{n}\end{array}\right]$
and $P D=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]=\left[\begin{array}{lllll}\lambda_{1} v_{1} & \lambda_{2} v_{2} & \cdots & \lambda_{n} v_{n}\end{array}\right]$.
This implies that $A P=\stackrel{P}{P} D$. Since P is invertible (because we assume v_{1}, v_{2}, \cdots, v_{n} are independent), we have $A P P^{-1}=P D P^{-1}, A I=P D P^{-1}$ and $A=P D P^{-1}$. Thus we have proved the following theorem.

Theorem 0.3An×n matrix is diagonizable if it has n independent eigenvectors. More precisely, Suppose $A v_{1}=\lambda_{1} v_{1}, A v_{2}=\lambda_{2} v_{2}, \cdots, A v_{n}=\lambda_{n} v_{n}$. Let P be a $n \times n$ matrix with columns $v_{1}, v_{2}, \cdots, v_{n}$, i.e. $P=\left[\begin{array}{lll}v_{1} & v_{2} & \cdots\end{array} v_{n}\right]$ and D be the diagonal matrix with diagonal entries $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$, i.e. $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$. Then we have $A=P D P^{-1}$

To find eigenvalue and eigenvector:

1. Compute $A-\lambda I$ and $\operatorname{det}(A-\lambda I)$.
2. Solve the characteristic polynomial $\operatorname{det}(A-\lambda I)=0$.
3. For each eigenvalue, use row reduction to find a basis for $N u l l(A-\lambda I)=$ $\{x \mid(A-\lambda I) x=0\}$. These vectors are the eigenvectors corresponding to eigenvalue λ.

To diagonalize a $n \times n$ matrix A.

1. Find eigenvalues and eigenvectors.
2. If there are n independent eigenvectors v_{1}, \cdots, v_{n} with eigenvalues λ_{1}, \cdots, λ_{n}, then $A=P D P^{-1}$ where $P=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$. 3. If we don't have n independent eigenvectors then A is not diagonizable.

Example 2 a. Find the characteristic polynomial, eigenvalues and eigenvectors of $\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]$.
b. Diagonalize the matrix A if possible.
c. Find a formula for A^{k}.

Solution: 1^{0} Compute $A-\lambda I=\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}1-\lambda & -2 \\ -2 & 1-\lambda\end{array}\right]$.
2^{0} Compute $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}1-\lambda & -2 \\ -2 & 1-\lambda\end{array}\right]\right)=(1-\lambda)^{2}-4=(1-\lambda)^{2}-$ $(-2)^{2}=\lambda^{2}-2 \lambda+1-4=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1)$.
3^{0} Solve $\operatorname{det}(A-\lambda I)=0$,i.e. $(\lambda-3)(\lambda+1)=0$. So the eigenvalues are 3 and -1 .
4^{0} When $\lambda=3, A-\lambda I=A-3 I=\left[\begin{array}{cc}1-3 & -2 \\ -2 & 1-3\end{array}\right]=\left[\begin{array}{ll}-2 & -2 \\ -2 & -2\end{array}\right] \sim\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ So the solution of $(A-3 I) x=0$ is $x_{1}+x_{2}=0$ and x_{2} is free. Hence $x_{1}=-x_{2}$. So $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}-x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. So $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=3$.
5^{0} When $\lambda=-1, A-\lambda I=A-(-1) I=A+I=\left[\begin{array}{cc}1+1 & -2 \\ -2 & 1+1\end{array}\right]=$ $\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right] \sim\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$ So the solution of $(A-(-1) I) x=0$ is $x_{1}-x_{2}=0$ and x_{2} is free. Hence $x_{1}=x_{2}$. So $x=\left[\begin{array}{l}x_{2} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$. So $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=-1$.
6^{0} So we have found that $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=3$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=-1$. Let
$P=\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]$. Then we have $A=P D P^{-1}$.
$7^{0} A^{k}=P D^{k} P^{-1}=P\left(\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]\right)^{k} P^{-1}=P\left[\begin{array}{cc}3^{k} & 0 \\ 0 & (-1)^{k}\end{array}\right] P^{-1}$. Since $P=$
$\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]$, we have $\operatorname{det}(P)=-2$ and $P^{-1}=\frac{1}{-2}\left[\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{-2} \\ \frac{1}{-2} & \frac{1}{-2}\end{array}\right]$.
Hence $A=\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}3^{k} & 0 \\ 0 & (-1)^{k}\end{array}\right]\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{-2} \\ \frac{1}{-2} & \frac{1}{-2}\end{array}\right]=\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{cc}\frac{3^{k}}{2} & -\frac{3^{k}}{2} \\ -\frac{(-1)^{k}}{2} & -\frac{(-1)^{k}}{2}\end{array}\right]=$ $\left[\begin{array}{cc}-\frac{3^{k}}{2}-\frac{(-1)^{k}}{2} & \frac{3^{k}}{2}-\frac{(-1)^{k}}{2} \\ \frac{3^{k}}{2}-\frac{(-1)^{k}}{2} & -\frac{3^{k}}{2}-\frac{(-1)^{k}}{2}\end{array}\right]$.

Example $3 \quad A=\left[\begin{array}{ccc}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right]$.
a. Show that $\operatorname{det}(A-\lambda I)=(1-\lambda)(2-\lambda)(3-\lambda)$.
b. Find the eigenvalues and eigenvectors of $\left[\begin{array}{ccc}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right]$.
c. Diagonalize the matrix A if possible.
d. Find a formula for A^{k}.

Solution: $1^{0} A-\lambda I=\left[\begin{array}{ccc}-1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3\end{array}\right]-\lambda\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-1-\lambda & 4 & -2 \\ -3 & 4-\lambda & 0 \\ -3 & 1 & 3-\lambda\end{array}\right]$.
2^{0} Compute $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}-1-\lambda & 4 & -2 \\ -3 & 4-\lambda & 0 \\ -3 & 1 & 3-\lambda\end{array}\right]\right)=(-1-\lambda)(4-$
$\lambda)(3-\lambda)+0+(-2)(-3) \cdot 1-(-2)(4-\lambda)(-3)-4(-3)(3-\lambda)-0=$ $-12-5 \lambda+6 \lambda^{2}-\lambda^{3}+6-24+6 \lambda+36-12 \lambda=6-11 \lambda+6 \lambda^{2}-\lambda^{3}$. Expanding $(1-\lambda)(2-\lambda)(3-\lambda)$, we get $(1-\lambda)(2-\lambda)(3-\lambda)=6-11 \lambda+6 \lambda^{2}-\lambda^{3}$. So $\operatorname{det}(A-\lambda I)=(1-\lambda)(2-\lambda)(3-\lambda)$.
3^{0} Solve $\operatorname{det}(A-\lambda I)=0$,i.e. $(1-\lambda)(2-\lambda)(3-\lambda)=0$. So the eigenvalues are 1, 2 and 3 .
4^{0} When $\lambda=1, A-\lambda I=A-I=\left[\begin{array}{ccc}-1-1 & 4 & -2 \\ -3 & 4-1 & 0 \\ -3 & 1 & 3-1\end{array}\right]=\left[\begin{array}{ccc}-2 & 4 & -2 \\ -3 & 3 & 0 \\ -3 & 1 & 2\end{array}\right] \sim$
$\left(r_{1}:=r_{1} /(-2), r_{2}:=r_{2} /(-3)\right)\left[\begin{array}{ccc}1 & -2 & 1 \\ 1 & -1 & 0 \\ -3 & 1 & 2\end{array}\right] \sim\left(r_{2}:=r_{2}-r_{1}, r_{3}:=\right.$
$\left.r_{3}+3 r_{1}\right)\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & -5 & 5\end{array}\right] \sim\left(r_{3}:=r_{3}+5 r_{2}, r_{1}:=r_{1}+2 r_{2}\right)\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$
So the solution of $(A-I) x=0$ is $x_{1}-x_{3}=0, x_{2}-x_{3}=0$ and x_{3} are free. Hence $x_{1}=x_{3}, x_{2}=x_{3}, x_{3}=x_{3}$. So $x=\left[\begin{array}{l}x_{3} \\ x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. So $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=1$.
5^{0} When $\lambda=2, A-\lambda I=A-2 I=\left[\begin{array}{ccc}-1-2 & 4 & -2 \\ -3 & 4-2 & 0 \\ -3 & 1 & 3-2\end{array}\right]=\left[\begin{array}{ccc}-3 & 4 & -2 \\ -3 & 2 & 0 \\ -3 & 1 & 1\end{array}\right] \sim$
$\left(r_{2}:=r_{2}-r_{1}, r_{3}:=r_{3}-r_{1}\right)\left[\begin{array}{ccc}-3 & 4 & -2 \\ 0 & -2 & 2 \\ 0 & -3 & 3\end{array}\right] \sim\left(r_{2}:=r_{2} /(-2), r_{3}:=\right.$ $\left.r_{3}+3 r_{2}\right)\left[\begin{array}{ccc}-3 & 4 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right] \sim\left(r_{1}:=r_{1}-4 r_{2}, r_{1}:=r_{1}+2 r_{2}\right)\left[\begin{array}{ccc}-3 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right] \sim$ $\left(r_{1}:=r_{1} /(-3)\right)\left[\begin{array}{ccc}1 & 0 & -2 / 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$ So the solution of $(A-2 I) x=0$ is $x_{1}=\frac{2}{3} x_{3}$, $x_{2}=x_{3}$ and x_{3} is free. So $x=\left[\begin{array}{c}\frac{2}{3} x_{3} \\ x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}\frac{2}{3} \\ 1 \\ 1\end{array}\right]$. We can choose $x_{3}=3$ So $\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=2$.

$$
\begin{gathered}
6^{0} \text { When } \lambda=3, A-\lambda I=A-3 I=\left[\begin{array}{ccc}
-1-3 & 4 & -2 \\
-3 & 4-3 & 0 \\
-3 & 1 & 3-3
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 4 & -2 \\
-3 & 1 & 0 \\
-3 & 1 & 0
\end{array}\right] \sim \\
\left(r_{1}:=r_{1} /(-4), r_{3}:=r_{2} /(-3), r_{3}:=r_{3}-r_{2}\right)\left[\begin{array}{ccc}
1 & -1 & 0.5 \\
1 & -\frac{1}{3} & 0 \\
0 & 0 & 0
\end{array}\right] \sim\left(r_{2}:=r_{2}-\right.
\end{gathered}
$$

$\left.r_{1}\right)\left[\begin{array}{ccc}1 & -1 & 0.5 \\ 0 & \frac{2}{3} & -0.5 \\ 0 & 0 & 0\end{array}\right] \sim\left(r_{1}:=r_{1}-\frac{3}{2} r_{2}\right)\left[\begin{array}{ccc}1 & -1 & 0.5 \\ 0 & 1 & -0.75 \\ 0 & 0 & 0\end{array}\right] \sim\left(r_{1}:=r_{1}+\right.$
$r_{2}\left[\begin{array}{ccc}1 & 0 & -0.25 \\ 0 & 1 & -0.75 \\ 0 & 0 & 0\end{array}\right]$ So the solution of $(A-3 I) x=0$ is $x_{1}=0.25 x_{3}, x_{2}=$
$0.75 x_{3}$ and x_{3} is free. So $x=\left[\begin{array}{c}0.25 x_{3} \\ 0.75 x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}0.25 \\ 0.75 \\ 1\end{array}\right]$. We can choose $x_{3}=4$ So $4 \cdot\left[\begin{array}{c}0.25 \\ 0.75 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=3$. 7^{0} So we have found that $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$ are eigenvectors corresponding to eigenvalue $\lambda=1, \lambda=2$ and $\lambda=3$

Let $P=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 4\end{array}\right]$ and $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$. Then we have $A=P D P^{-1}$.
$7^{0} A^{k}=P D^{k} P^{-1}=P\left(\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]\right)^{k} P^{-1}=P\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2^{k} & 0 \\ 0 & 0 & 3^{k}\end{array}\right] P^{-1}$. We can find the formula for P^{-1} to simplify this expression. But let us just stop here.

Example 4 a. Find the characteristic polynomial, eigenvalues and eigenvectors of $\left[\begin{array}{ccc}2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$.
b. Diagonalize the matrix A if possible.
c. Find a formula for A^{k}.

Solution: 1^{0} Compute $A-\lambda I=\left[\begin{array}{ccc}2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]-\lambda\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}2-\lambda & 0 & 0 \\ -1 & 3-\lambda & 1 \\ -1 & 1 & 3-\lambda\end{array}\right]$.
2^{0} Compute $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}2-\lambda & 0 & 0 \\ -1 & 3-\lambda & 1 \\ -1 & 1 & 3-\lambda\end{array}\right]\right)=(2-\lambda)(3-\lambda)^{2}-$ $(2-\lambda)=(2-\lambda)\left((3-\lambda)^{2}-1\right)=(2-\lambda)((3-\lambda)-1)((3-\lambda)+1)=$
$(2-\lambda)(2-\lambda)(4-\lambda)=(2-\lambda)^{2}(4-\lambda)$.
3^{0} Solve $\operatorname{det}(A-\lambda I)=0$,i.e. $(2-\lambda)^{2}(4-\lambda)=0$. So the eigenvalues are 2 and 4.
4^{0} When $\lambda=2, A-\lambda I=A-2 I=\left[\begin{array}{ccc}2-2 & 0 & 0 \\ -1 & 3-2 & 1 \\ -1 & 1 & 3-2\end{array}\right]=\left[\begin{array}{ccc}0 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 1 & 1\end{array}\right] \sim$ $\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ So the solution of $(A-2 I) x=0$ is $x_{1}-x_{2}-x_{3}=0, x_{2}$ and x_{3} are free. Hence $x_{1}=x_{2}+x_{3}$. So $x=\left[\begin{array}{c}x_{2}+x_{3} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{2} \\ x_{2} \\ 0\end{array}\right]+\left[\begin{array}{c}x_{3} \\ 0 \\ x_{3}\end{array}\right]=$ $x_{2}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. So $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ are eigenvectors corresponding to eigenvalue $\lambda=2$.
5^{0} When $\lambda=4, A-\lambda I=A-4 I=\left[\begin{array}{ccc}2-4 & 0 & 0 \\ -1 & 3-4 & 1 \\ -1 & 1 & 3-4\end{array}\right]=\left[\begin{array}{ccc}-2 & 0 & 0 \\ -1 & -1 & 1 \\ -1 & 1 & -1\end{array}\right] \sim$ $\left(r_{1}:=r_{1} / 2\right)=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & -1 & 1 \\ -1 & 1 & -1\end{array}\right] \sim\left(r_{2}:=r_{2}+r_{1}, r_{3}:=r_{3}+r_{1}\right)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1\end{array}\right] \sim$ $\left(r_{2}:=-r_{2}, r_{3}:=r_{3}+r_{2}\right)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$ So the solution of $(A-4 I) x=0$ is $x_{1}=0, x_{2}-x_{3}=0$ and x_{3} is free. Hence $x_{1}=0, x_{2}=x_{3}$. So $x=\left[\begin{array}{l}0 \\ x_{3} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. So $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\bar{\lambda}=4$.
6^{0} So we have found that $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ are eigenvectors corresponding to eigenvalue $\lambda=2$ and $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue
$\lambda=4$ Let $P=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]$. Then we have $A=P D P^{-1}$. $7^{0} A^{k}=P D^{k} P^{-1}=P\left(\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]\right)^{k} P^{-1}=P\left[\begin{array}{ccc}2^{k} & 0 & 0 \\ 0 & 2^{k} & 0 \\ 0 & 0 & 4^{k}\end{array}\right] P^{-1}$. We can find the formula for P^{-1} to simplify this expression. But let us just stop here.

Not every matrix is diagonizable. The following is an example.
Example 5 a. Find the characteristic polynomial, eigenvalues and eigenvectors of $\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4\end{array}\right]$.
b. Diagonalize the matrix A if possible.

Solution: 1^{0} Compute $A-\lambda I=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4\end{array}\right]-\lambda\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}2-\lambda & 1 & 1 \\ 0 & 2-\lambda & 1 \\ 0 & 0 & 4-\lambda\end{array}\right]$.
2^{0} Compute $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}2-\lambda & 1 & 1 \\ 0 & 2-\lambda & 1 \\ 0 & 0 & 4-\lambda\end{array}\right]\right)=(2-\lambda)^{2}(4-\lambda)$.
3^{0} Solve $\operatorname{det}(A-\lambda I)=0$,i.e. $(2-\lambda)^{2}(4-\lambda)=0$. So the eigenvalues are 2 and 4.
4^{0} When $\lambda=2, A-\lambda I=A-2 I=\left[\begin{array}{ccc}2-2 & 1 & 1 \\ 0 & 2-2 & 1 \\ 0 & 0 & 4-2\end{array}\right]=\left[\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2\end{array}\right] \sim$ $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ So the solution of $(A-2 I) x=0$ is $x_{2}=0, x_{3}=0$ and x_{1} is free. So $x=\left[\begin{array}{c}x_{1} \\ 0 \\ 0\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. So $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=2$.
5^{0} When $\lambda=4, A-\lambda I=A-4 I=\left[\begin{array}{ccc}2-4 & 1 & 1 \\ 0 & 2-4 & 1 \\ 0 & 0 & 4-4\end{array}\right]=\left[\begin{array}{ccc}-2 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0\end{array}\right] \sim$
$\left(r_{2}:=-r_{2} / 2\right)=\left[\begin{array}{ccc}-2 & 1 & 1 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0\end{array}\right] \sim\left(r_{1}:=r_{2}-r_{1}\right)=\left[\begin{array}{ccc}-2 & 0 & \frac{3}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0\end{array}\right] \sim\left(r_{1}:=\right.$ $\left.-r_{1} / 2\right)=\left[\begin{array}{ccc}1 & 0 & -\frac{3}{4} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0\end{array}\right]$ So the solution of $(A-4 I) x=0$ is $x_{1}-\frac{3}{4} x_{3}=0$,$x_{2}-\frac{1}{2} x_{3}=0$ and x_{3} is free. Hence $x_{1}=\frac{3}{4} x_{3}, x_{2}=\frac{1}{2} x_{3}$. So $x=\left[\begin{array}{c}\frac{3}{4} x_{3} \\ \frac{1}{2} x_{3} \\ x_{3}\end{array}\right]=$ $x_{3}\left[\begin{array}{c}\frac{3}{4} \\ \frac{1}{2} \\ 1\end{array}\right]$. So $\left[\begin{array}{c}\frac{3}{4} \\ \frac{1}{2} \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=4$.
6^{0} So we have found that $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=2$ and $\left[\begin{array}{c}\frac{3}{4} \\ \frac{1}{2} \\ 1\end{array}\right]$ is an eigenvector corresponding to eigenvalue $\lambda=4$. Therefore we have only two eigenvectors for A. Thus A is not diagonizable. (We need 3 eigenvectors to diagonalize a 3×3 matrix.

1 Exponential of a matrix and characteristic polynomial

Recall that $e^{x}=1+x+\frac{x^{2}}{2!}+\cdots$. We can define the exponential f a matrix by the following.

Definition 1.1 The exponential of a $n \times n$ matrix A is denoted by e^{A} which is defined by $e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots$. We use the convention that $A^{0}=I$ and $0!=1$.

If D is an diagonal matrix with $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$ then

$$
\begin{align*}
& e^{D} \\
& =I+D+\frac{D^{2}}{2!}+\frac{D^{3}}{3!}+\cdots \\
& =\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]+\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]+\left[\begin{array}{cccc}
\frac{\lambda_{1}^{2}}{2!} & 0 & \cdots & 0 \\
0 & \frac{\lambda_{2}^{2}}{2!} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \frac{\lambda_{n}^{2}}{2!}
\end{array}\right]+\left[\begin{array}{cccc}
\frac{\lambda_{1}^{3}}{3!} & 0 & \cdots & 0 \\
0 & \frac{\lambda_{2}^{3}}{3!} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \frac{\lambda_{n}^{3}}{3!}
\end{array}\right]+\cdots \\
& =\left[\begin{array}{cccc}
1+\lambda_{1}+\frac{\lambda_{1}^{2}}{2!}+\frac{\lambda_{1}^{3}}{3!}+\cdots & 0 & \cdots & 0 \\
0 & 1+\lambda_{2}+\frac{\lambda_{2}^{2}}{2!}+\frac{\lambda_{2}^{3}}{3!}+\cdots & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & & \cdots \\
1+\lambda_{n}+\frac{\lambda_{n}^{2}}{2!}+\frac{\lambda_{n}^{3}}{3!}+\cdots
\end{array}\right] \\
& =\left[\begin{array}{cccc}
e^{\lambda_{1}} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & e^{\lambda_{n}}
\end{array}\right] \tag{1.1}
\end{align*}
$$

Thus we have the following theorem.
Theorem 1.1 Suppose $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$. Then $e^{D}=\left[\begin{array}{cccc}e^{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & e^{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & e^{\lambda_{n}}\end{array}\right]$
If A is diagonizable with $A=P D P^{-1}$ then $e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\cdots=$ $I+P D P^{-1}+\frac{P D^{2} P^{-1}}{2!}+\frac{P D^{3} P^{-1}}{3!}+\cdots=P\left(I+D+\frac{D^{2}}{2!}+\frac{D^{3}}{3!}+\cdots\right) P^{-1}=P e^{D} P^{-1}$. Thus we have the following theorem.

Theorem 1.2 Suppose $A=P D P^{-1}$ where $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right]$. Then $e^{A}=P\left[\begin{array}{cccc}e^{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & e^{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & e^{\lambda_{n}}\end{array}\right] P^{-1}$.

Example 6 Use the result in example 3 to find e^{A} where $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$ Solution: From example 3, we have $A=P D P^{-1}$ where $P=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]$. So $e^{A}=P e^{D} P^{-1}=P\left[\begin{array}{ccc}e^{2} & 0 & 0 \\ 0 & e^{2} & 0 \\ 0 & 0 & e^{4}\end{array}\right] P^{-1}$.

The last thing that we want to discuss is the characteristic polynomial gives us a nice equation for A. Given a polynomial $f(\lambda)=a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+$ $\cdots+a_{1} \lambda+a_{0}$. We define $f(A)=a_{n} A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0} I$. We have the following interesting result.

Theorem 1.3 Let $f(\lambda)=\operatorname{det}(A-\lambda I)$. Then $f(A)=0$.
Example 7 Let $A=\left[\begin{array}{cc}1 & -2 \\ -2 & 1\end{array}\right]$ Recall that $\operatorname{det}(A-\lambda I)=(\lambda-3)(\lambda+1)=$ $\lambda^{2}-2 \lambda-3$. One can verify that $A^{2}-2 A-3 I=0$

