5.1,5.2,5.3 Eigenvalues, Eigenvectors and Diagonalization

Definition 0.1 Let A be a $n \times n$ matrix. A scalar λ such that $Ax = \lambda x$ for some $x \neq 0$ is called an eigenvalue and the corresponding vector is called an eigenvector.

From the definition, we know that λ is an eigenvalue if and only if there is $x \neq 0$ such that $(A - \lambda I)x = 0$. The set of solutions is called the eigenspace corresponding to eigenvalue λ . We know that eigenspace corresponding to eigenvalue $\lambda = Nul(A - \lambda I) = \{x | (A - \lambda I)x = 0\}.$

Since $(A - \lambda I)x = 0$ has nonzero solution, we know that $A - \lambda I$ is not invertible. Therefore $det(A - \lambda I) = 0$. So we have the following.

Theorem 0.1 λ is an eigenvalue of A iff $det(A - \lambda I) = 0$ (this is called the characteristic polynomial).

In the following, we will discuss the diagonalization of a matrix.

Definition 0.2 A $n \times n$ matrix A is diagonizable if $A = PDP^{-1}$ where P is invertible and D is diagonal.

If a matrix is diagonizable then we can find the power of A easily.

If a matrix is diagonizable then we can find only $P = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$

then
$$D^{k} = \begin{bmatrix} \lambda_{1}^{k} & 0 & \cdots & 0 \\ 0 & \lambda_{2}^{k} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n}^{k} \end{bmatrix}.$$

Example 1 Let $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Then $D^{k} = \begin{bmatrix} 2^{k} & 0 \\ 0 & 3^{k} \end{bmatrix}$ Let $E = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -5 \end{bmatrix}$. Then $E^{k} = \begin{bmatrix} 2^{k} & 0 & 0 \\ 0 & 3^{k} & 0 \\ 0 & 0 & (-5)^{k} \end{bmatrix}$

If A is diagonizable then we have $A = PDP^{-1}$. So $A^2 = AA = PDP^{-1}PDP^{-1} = PDIDP^{-1} = PD^2P^{-1}$ and $A^k = PD^kP^{-1}$. Then we have the following result.

Theorem 0.2 Suppose $A = PDP^{-1}$. Then $A^k = PD^kP^{-1}$.

Next we will discuss the relation between eigenvalues, eigenvectors and diagonalization of a matrix.

Suppose we have *n* independent eigenvectors v_1, v_2, \dots, v_n corresponding to eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. This implies that $Av_1 = \lambda_1 v_1, Av_2 = \lambda_2 v_2, \dots, Av_n = \lambda_n v_n$. Let *P* be a $n \times n$ matrix with columns v_1, v_2, \dots, v_n , i.e. $P = [v_1 \ v_2 \ \dots \ v_n]$ and *D* be the diagonal matrix with diagonal entries $\lambda_1,$ $\begin{bmatrix} \lambda_1 & 0 & \dots & 0 \end{bmatrix}$

$$\lambda_{2}, \dots, \lambda_{n}, \text{ i.e. } D = \begin{bmatrix} 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}.$$

Then $AP = A[v_{1} \ v_{2} \cdots \ v_{n}] = [Av_{1} \ Av_{2} \cdots \ Av_{n}] = [\lambda_{1}v_{1} \ \lambda_{2}v_{2} \ \cdots \ \lambda_{n}v_{n}]$
and $PD = [v_{1} \ v_{2} \ \cdots \ v_{n}] \begin{bmatrix} \lambda_{1} & 0 \ \cdots & 0 \\ 0 & \lambda_{2} \ \cdots \ 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 \ \cdots \ \lambda_{n} \end{bmatrix} = [\lambda_{1}v_{1} \ \lambda_{2}v_{2} \ \cdots \ \lambda_{n}v_{n}].$

This implies that $AP = \overline{P}D$. Since P is invertible (because we assume v_1 , v_2, \dots, v_n are independent), we have $APP^{-1} = PDP^{-1}$, $AI = PDP^{-1}$ and $A = PDP^{-1}$. Thus we have proved the following theorem.

Theorem 0.3 A $n \times n$ matrix is diagonizable if it has n independent eigenvectors. More precisely, Suppose $Av_1 = \lambda_1 v_1$, $Av_2 = \lambda_2 v_2$, \cdots , $Av_n = \lambda_n v_n$. Let P be a $n \times n$ matrix with columns v_1, v_2, \cdots, v_n , i.e. $P = [v_1 \ v_2 \ \cdots \ v_n]$ and D be the diagonal matrix with diagonal entries $\lambda_1, \lambda_2, \cdots, \lambda_n$, i.e.

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}.$$
 Then we have $A = PDP^{-1}$

To find eigenvalue and eigenvector:

1. Compute $A - \lambda I$ and $det(A - \lambda I)$.

2. Solve the characteristic polynomial $det(A - \lambda I) = 0$.

3. For each eigenvalue, use row reduction to find a basis for $Null(A - \lambda I) = \{x | (A - \lambda I)x = 0\}$. These vectors are the eigenvectors corresponding to eigenvalue λ .

To diagonalize a $n \times n$ matrix A.

1. Find eigenvalues and eigenvectors.

2. If there are *n* independent eigenvectors v_1, \dots, v_n with eigenvalues $\lambda_1, \dots, \lambda_n$, then $A = PDP^{-1}$ where $P = [v_1 \ v_2 \ \dots \ v_n]$ and $D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$.

3. If we don't have n independent eigenvectors then A is not diagonizable.

Example 2 a. Find the characteristic polynomial, eigenvalues and eigenvectors of $\begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$. b. Diagonalize the matrix A if possible. c. Find a formula for A^k . Solution: 1⁰ Compute $A - \lambda I = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 - \lambda & -2 \\ -2 & 1 - \lambda \end{bmatrix}$. 2⁰ Compute $det(A - \lambda I) = det(\begin{bmatrix} 1 - \lambda & -2 \\ -2 & 1 - \lambda \end{bmatrix}) = (1 - \lambda)^2 - 4 = (1 - \lambda)^2 - (-2)^2 = \lambda^2 - 2\lambda + 1 - 4 = \lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1).$ 3⁰ Solve $det(A - \lambda I) = 0$, i.e. $(\lambda - 3)(\lambda + 1) = 0$. So the eigenvalues are 3 and -1. and 1. $4^{0} \text{When } \lambda = 3, A - \lambda I = A - 3I = \begin{bmatrix} 1 - 3 & -2 \\ -2 & 1 - 3 \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \text{ So}$ the solution of (A - 3I)x = 0 is $x_{1} + x_{2} = 0$ and x_{2} is free. Hence $x_{1} = -x_{2}$. So $x = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} -x_{2} \\ x_{2} \end{bmatrix} = x_{2} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. So $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 3$. 5°When $\lambda = -1$, $A - \lambda I = A - (-1)I = A + I = \begin{bmatrix} 1+1 & -2 \\ -2 & 1+1 \end{bmatrix} =$ $\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$ So the solution of (A - (-1)I)x = 0 is $x_1 - x_2 = 0$ and x_2 is free. Hence $x_1 = x_2$. So $x = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. So $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 6^{0}$ So we have found that $\begin{vmatrix} -1 \\ 1 \end{vmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 3$ and $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = -1$. Let

 $P = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}$. Then we have $A = PDP^{-1}$. $7^{0} A^{k} = PD^{k}P^{-1} = P(\begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix})^{k}P^{-1} = P\begin{bmatrix} 3^{k} & 0 \\ 0 & (-1)^{k} \end{bmatrix}P^{-1}.$ Since P = $\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \text{ we have } det(P) = -2 \text{ and } P^{-1} = \frac{1}{-2} \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{-2} \\ \frac{1}{-2} & \frac{1}{-2} \end{bmatrix}.$ Hence $A = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3^k & 0 \\ 0 & (-1)^k \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{-2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{3^k}{2} & -\frac{3^k}{2} \\ -\frac{(-1)^k}{2} & -\frac{(-1)^k}{2} \end{bmatrix} =$ $\begin{bmatrix} -\frac{3^k}{2} - \frac{(-1)^k}{2} & \frac{3^k}{2} - \frac{(-1)^k}{2} \\ \frac{3^k}{2} - \frac{(-1)^k}{2} & -\frac{3^k}{2} - \frac{(-1)^k}{2} \end{bmatrix}.$ Example 3 $A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$. a. Show that $det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(3 - \lambda)$. b. Find the eigenvalues and eigenvectors of $\begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 2 \end{bmatrix}$. c. Diagonalize the matrix A if possible. d. Find a formula for A^k . Solution: $1^{0} A - \lambda I = \begin{vmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{vmatrix} - \lambda \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{bmatrix} -1 - \lambda & 4 & -2 \\ -3 & 4 - \lambda & 0 \\ -3 & 1 & 3 - \lambda \end{vmatrix}.$ 2⁰ Compute $det(A - \lambda I) = det(\begin{bmatrix} -1 - \lambda & 4 & -2 \\ -3 & 4 - \lambda & 0 \\ -3 & 1 & 3 - \lambda \end{bmatrix}) = (-1 - \lambda)(4 - \lambda I)(4 - \lambda I)(4 - \lambda I)$ $\lambda)(3-\lambda) + 0 + (-2)(-3) \cdot 1 - (-2)(4-\lambda)(-3) - 4(-3)(3-\lambda) - 0 = -12 - 5\lambda + 6\lambda^2 - \lambda^3 + 6 - 24 + 6\lambda + 36 - 12\lambda = 6 - 11\lambda + 6\lambda^2 - \lambda^3.$ Expanding $(1-\lambda)(2-\lambda)(3-\lambda)$, we get $(1-\lambda)(2-\lambda)(3-\lambda) = 6 - 11\lambda + 6\lambda^2 - \lambda^3$. So $det(A - \lambda I) = (1 - \lambda)(2 - \lambda)(3 - \lambda).$ 3^0 Solve $det(A - \lambda I) = 0$, i.e. $(1 - \lambda)(2 - \lambda)(3 - \lambda) = 0$. So the eigenvalues are 1, 2 and 3. $4^{0^{-1}}$

When
$$\lambda = 1, A - \lambda I = A - I = \begin{bmatrix} -1 - 1 & 4 & -2 \\ -3 & 4 - 1 & 0 \\ -3 & 1 & 3 - 1 \end{bmatrix} = \begin{bmatrix} -2 & 4 & -2 \\ -3 & 3 & 0 \\ -3 & 1 & 2 \end{bmatrix} \sim$$

 $(r_1 := r_1/(-2), r_2 := r_2/(-3)) \begin{vmatrix} 1 & -2 & 1 \\ 1 & -1 & 0 \\ -3 & 1 & 2 \end{vmatrix} \sim (r_2 := r_2 - r_1, r_3 :=$ So the solution of (A - I)x = 0 is $x_1 - x_3 = 0$, $x_2 - x_3 = 0$ and x_3 are free. Hence $x_1 = x_3, x_2 = x_3, x_3 = x_3$. So $x = \begin{bmatrix} x_3 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. So $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 1$. 5^{0} When $\lambda = 2, A - \lambda I = A - 2I = \begin{bmatrix} -1 - 2 & 4 & -2 \\ -3 & 4 - 2 & 0 \\ -3 & 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} -3 & 4 & -2 \\ -3 & 2 & 0 \\ -3 & 1 & 1 \end{bmatrix} \sim$ $(r_{2} := r_{2} - r_{1}, r_{3} := r_{3} - r_{1}) \begin{bmatrix} -3 & 4 & -2 \\ 0 & -2 & 2 \\ 0 & -3 & 3 \end{bmatrix} \sim (r_{2} := r_{2}/(-2), r_{3} :=$ $\left. \begin{array}{ccc} r_3 + 3r_2 \end{array} \right| \left. \begin{array}{ccc} -3 & 4 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array} \right| \ \sim \left(r_1 := r_1 - 4r_2, r_1 := r_1 + 2r_2 \right) \left[\begin{array}{ccc} -3 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array} \right] \ \sim \\ \end{array} \right.$ $(r_1 := r_1/(-3)) \begin{vmatrix} 1 & 0 & -2/3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{vmatrix}$ So the solution of (A - 2I)x = 0 is $x_1 = \frac{2}{3}x_3$, $x_2 = x_3$ and x_3 is free. So $x = \begin{bmatrix} \frac{2}{3}x_3 \\ x_3 \\ x_2 \end{bmatrix} = x_3 \begin{bmatrix} \frac{2}{3} \\ 1 \\ 1 \end{bmatrix}$. We can choose $x_3 = 3$ So $\frac{3}{3}$ is an eigenvector corresponding to eigenvalue $\lambda = 2$.

$$6^{0} \text{ When } \lambda = 3, A - \lambda I = A - 3I = \begin{bmatrix} -1 - 3 & 4 & -2 \\ -3 & 4 - 3 & 0 \\ -3 & 1 & 3 - 3 \end{bmatrix} = \begin{bmatrix} -4 & 4 & -2 \\ -3 & 1 & 0 \\ -3 & 1 & 0 \end{bmatrix} \sim (r_{1} := r_{1}/(-4), r_{3} := r_{2}/(-3), r_{3} := r_{3} - r_{2}) \begin{bmatrix} 1 & -1 & 0.5 \\ 1 & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim (r_{2} := r_{2} - \frac{1}{3} - \frac{1}{3}$$

$$\begin{array}{l} 1 & -1 & 0.5 \\ 0 & \frac{2}{3} & -0.5 \\ 0 & 0 & 0 \end{array} \right] \sim (r_1 := r_1 - \frac{3}{2}r_2) \begin{bmatrix} 1 & -1 & 0.5 \\ 0 & 1 & -0.75 \\ 0 & 0 & 0 \end{bmatrix} \sim (r_1 := r_1 + r_1 + r_2) \begin{bmatrix} 1 & 0 & -0.75 \\ 0 & 1 & -0.75 \\ 0 & 0 & 0 \end{bmatrix}$$
 So the solution of $(A - 3I)x = 0$ is $x_1 = 0.25x_3$, $x_2 = 0.75x_3$ and x_3 is free. So $x = \begin{bmatrix} 0.25x_3 \\ 0.75x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 0.25 \\ 0.75 \\ 1 \end{bmatrix}$. We can choose $x_3 = 4$
So $4 \cdot \begin{bmatrix} 0.25 \\ 0.75 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 3$.
 7^0 So we have found that $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 3 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$ are eigenvectors corresponding to eigenvalue $\lambda = 3$.
Let $P = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. Then we have $A = PDP^{-1}$.
 $7^0 A^k = PD^kP^{-1} = P(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix})^k P^{-1} = P\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^k & 0 \\ 0 & 0 & 3^k \end{bmatrix} P^{-1}$. We can find the formula for P^{-1} to simplify this expression. But let us just stop here.
Example 4 a. Find the characteristic polynomial, eigenvalues and eigenvectors of $\begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$.
b. Diagonalize the matrix A if possible.
c. Find a formula for A^k .
Solution: 1^0 Compute $A - \lambda I = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 - \lambda \end{bmatrix} = (2 - \lambda)((3 - \lambda)^2 - 1) = (2 - \lambda)((3 - \lambda) - 1)((3 - \lambda) + 1) =$

 $(2-\lambda)(2-\lambda)(4-\lambda) = (2-\lambda)^2(4-\lambda).$ 3⁰ Solve $det(A-\lambda I) = 0$, i.e. $(2-\lambda)^2(4-\lambda) = 0$. So the eigenvalues are 2 and 4. 4⁰When $\lambda = 2, A - \lambda I = A - 2I = \begin{bmatrix} 2-2 & 0 & 0 \\ -1 & 3-2 & 1 \\ -1 & 1 & 3-2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \sim$ $\begin{vmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix}$ So the solution of (A - 2I)x = 0 is $x_1 - x_2 - x_3 = 0$, x_2 and x_3 are free. Hence $x_1 = x_2 + x_3$. So $x = \begin{bmatrix} x_2 + x_3 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_2 \\ 0 \end{bmatrix} + \begin{bmatrix} x_3 \\ 0 \\ x_2 \end{bmatrix} =$ $x_2 \begin{vmatrix} 1 \\ 1 \\ 0 \end{vmatrix} + x_3 \begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix}$. So $\begin{vmatrix} 1 \\ 1 \\ 0 \end{vmatrix}$ and $\begin{vmatrix} 1 \\ 0 \\ 1 \end{vmatrix}$ are eigenvectors corresponding to eigen- $5^{0} \text{ When } \lambda = 4, A - \lambda I = A - 4I = \begin{vmatrix} 2-4 & 0 & 0 \\ -1 & 3-4 & 1 \\ -1 & 1 & 3-4 \end{vmatrix} = \begin{vmatrix} -2 & 0 & 0 \\ -1 & -1 & 1 \\ -1 & 1 & -1 \end{vmatrix} \sim$ $(r_1 := r_1/2) = \begin{bmatrix} 1 & 0 & 0 \\ -1 & -1 & 1 \\ -1 & 1 & -1 \end{bmatrix} \sim (r_2 := r_2 + r_1, r_3 := r_3 + r_1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \sim$ $(r_2 := -r_2, r_3 := r_3 + r_2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$ So the solution of (A - 4I)x = 0is $x_1 = 0$, $x_2 - x_3 = 0$ and x_3 is free. Hence $x_1 = 0$, $x_2 = x_3$. So $x = \begin{bmatrix} 0 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. So $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigen-Value $\lambda = 4$. 6^{0} So we have found that $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ are eigenvectors corresponding to eigenvalue $\lambda = 2$ and $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue

$$\lambda = 4 \text{ Let } P = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}. \text{ Then we have } A = PDP^{-1}.$$

$$7^{0} A^{k} = PD^{k}P^{-1} = P(\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix})^{k}P^{-1} = P\begin{bmatrix} 2^{k} & 0 & 0 \\ 0 & 2^{k} & 0 \\ 0 & 0 & 4^{k} \end{bmatrix} P^{-1}. \text{ We can find}$$

the formula for P^{-1} to simplify this expression. But let us just stop here. Not every matrix is diagonizable. The following is an example.

Example 5 a. Find the characteristic polynomial, eigenvalues and eigenvectors of $\begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix}$. b. Diagonalize the matrix A if possible.

Solution: 1⁰ Compute
$$A - \lambda I = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 4 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{bmatrix}$$

2⁰ Compute $det(A - \lambda I) = det(\begin{bmatrix} 2 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 1 \\ 0 & 0 & 4 - \lambda \end{bmatrix}) = (2 - \lambda)^2(4 - \lambda).$
3⁰ Solve $det(A - \lambda I) = 0$, i.e. $(2 - \lambda)^2(4 - \lambda) = 0$. So the eigenvalues are 2
and 4.
4⁰When $\lambda = 2, A - \lambda I = A - 2I = \begin{bmatrix} 2 - 2 & 1 & 1 \\ 0 & 2 - 2 & 1 \\ 0 & 0 & 4 - 2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \sim$
 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ So the solution of $(A - 2I)x = 0$ is $x_2 = 0$, $x_3 = 0$ and x_1 is
free. So $x = \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. So $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is an eigenvector corresponding to
eigenvalue $\lambda = 2$.
5⁰ When $\lambda = 4, A - \lambda I = A - 4I = \begin{bmatrix} 2 - 4 & 1 & 1 \\ 0 & 2 - 4 & 1 \\ 0 & 0 & 4 - 4 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} \sim$

$$(r_{2} := -r_{2}/2) = \begin{bmatrix} -2 & 1 & 1 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix} \sim (r_{1} := r_{2} - r_{1}) = \begin{bmatrix} -2 & 0 & \frac{3}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix} \sim (r_{1} := -r_{1}/2) = \begin{bmatrix} 1 & 0 & -\frac{3}{4} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}$$
 So the solution of $(A - 4I)x = 0$ is $x_{1} - \frac{3}{4}x_{3} = 0$
 $x_{2} - \frac{1}{2}x_{3} = 0$ and x_{3} is free. Hence $x_{1} = \frac{3}{4}x_{3}, x_{2} = \frac{1}{2}x_{3}$. So $x = \begin{bmatrix} \frac{3}{4}x_{3} \\ \frac{1}{2}x_{3} \\ x_{3} \end{bmatrix} = x_{3} \begin{bmatrix} \frac{3}{4} \\ \frac{1}{2} \\ 1 \end{bmatrix}$. So $\begin{bmatrix} \frac{3}{4} \\ \frac{1}{2} \\ 1 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 4$.
 6^{0} So we have found that $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is an eigenvector corresponding to eigenvalue $\lambda = 4$. Therefore we have only two eigenvectors for A . Thus A is not diagonizable. (We need 3 eigenvectors to diagonalize a 3×3 matrix.

1 Exponential of a matrix and characteristic polynomial

Recall that $e^x = 1 + x + \frac{x^2}{2!} + \cdots$. We can define the exponential f a matrix by the following.

Definition 1.1 The exponential of a $n \times n$ matrix A is denoted by e^A which is defined by $e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$. We use the convention that $A^0 = I$ and 0! = 1.

If D is an diagonal matrix with $D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$ then

$$\begin{split} e^{D} \\ = I + D + \frac{D^{2}}{2!} + \frac{D^{3}}{3!} + \cdots \\ = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} + \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix} + \begin{bmatrix} \frac{\lambda_{1}^{2}}{2!} & 0 & \cdots & 0 \\ 0 & \frac{\lambda_{2}^{2}}{2!} & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \frac{\lambda_{n}^{3}}{3!} \end{bmatrix} + \begin{bmatrix} \frac{\lambda_{1}^{3}}{3!} & 0 & \cdots & 0 \\ 0 & \frac{\lambda_{2}^{3}}{3!} & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 + \lambda_{n} + \frac{\lambda_{n}^{2}}{2!} + \frac{\lambda_{n}^{3}}{3!} + \cdots \end{bmatrix} + \cdots \\ = \begin{bmatrix} e^{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & e^{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 + \lambda_{n} + \frac{\lambda_{n}^{2}}{2!} + \frac{\lambda_{n}^{3}}{3!} + \cdots \end{bmatrix} \\ = \begin{bmatrix} e^{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & e^{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_{n}} \end{bmatrix} \end{split}$$

Thus we have the following theorem.

Theorem 1.1 Suppose
$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$
. Then $e^D = \begin{bmatrix} e^{\lambda_1} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n} \end{bmatrix}$

If A is diagonizable with $A = PDP^{-1}$ then $e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots = I + PDP^{-1} + \frac{PD^2P^{-1}}{2!} + \frac{PD^3P^{-1}}{3!} + \dots = P(I + D + \frac{D^2}{2!} + \frac{D^3}{3!} + \dots)P^{-1} = Pe^DP^{-1}.$ Thus we have the following theorem. Theorem 1.2 Suppose $A = PDP^{-1}$ where $D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$. Then $e^A = P \begin{bmatrix} e^{\lambda_1} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n} \end{bmatrix} P^{-1}.$

Example 6 Use the result in example 3 to find e^A where $A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$ Solution: From example 3, we have $A = PDP^{-1}$ where $P = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$. So $e^A = Pe^DP^{-1} = P \begin{bmatrix} e^2 & 0 & 0 \\ 0 & e^2 & 0 \\ 0 & 0 & e^4 \end{bmatrix} P^{-1}$.

The last thing that we want to discuss is the characteristic polynomial gives us a nice equation for A. Given a polynomial $f(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \cdots + a_1 \lambda + a_0$. We define $f(A) = a_n A^n + a_{n-1} A^{n-1} + \cdots + a_1 A + a_0 I$. We have the following interesting result.

Theorem 1.3 Let $f(\lambda) = det(A - \lambda I)$. Then f(A) = 0.

Example 7 Let $A = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$ Recall that $det(A - \lambda I) = (\lambda - 3)(\lambda + 1) = \lambda^2 - 2\lambda - 3$. One can verify that $A^2 - 2A - 3I = 0$