
5.1,5.2,5.3 Eigenvalues, Eigenvectors and Diagonalization

Definition 0.1 Let A be a n× n matrix. A scalar λ such that Ax = λx for
some x 6= 0 is called an eigenvalue and the corresponding vector is called an
eigenvector.

From the definition, we know that λ is an eigenvalue if and only if there is
x 6= 0 such that (A− λI)x = 0. The set of solutions is called the eigenspace
corresponding to eigenvalue λ. We know that eigenspace corresponding to
eigenvalue λ = Nul(A− λI) = {x|(A− λI)x = 0}.

Since (A − λI)x = 0 has nonzero solution, we know that A − λI is not
invertible. Therefore det(A− λI) = 0. So we have the following.

Theorem 0.1 λ is an eigenvalue of A iff det(A− λI) = 0 (this is called the
characteristic polynomial).

In the following, we will discuss the diagonalization of a matrix.

Definition 0.2 A n × n matrix A is diagonizable if A = PDP−1 where P
is invertible and D is diagonal.

If a matrix is diagonizable then we can find the power of A easily.

First, we can show that if D is diagonal, i.e. D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn



then Dk =


λk1 0 · · · 0
0 λk2 · · · 0
...

...
...

0 0 · · · λkn

.

Example 1 Let D =

[
2 0
0 3

]
. Then Dk =

[
2k 0
0 3k

]
Let E =

2 0 0
0 3 0
0 0 −5

. Then Ek =

2k 0 0
0 3k 0
0 0 (−5)k


If A is diagonizable then we have A = PDP−1.

SoA2 = AA = PDP−1PDP−1 = PDIDP−1 = PD2P−1 andAk = PDkP−1.
Then we have the following result.
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Theorem 0.2 Suppose A = PDP−1. Then Ak = PDkP−1.

Next we will discuss the relation between eigenvalues, eigenvectors and
diagonalization of a matrix.

Suppose we have n independent eigenvectors v1, v2, · · · , vn corresponding
to eigenvalues λ1, λ2, · · · , λn. This implies that Av1 = λ1v1, Av2 = λ2v2,
· · · , Avn = λnvn. Let P be a n × n matrix with columns v1, v2, · · · , vn, i.e.
P = [v1 v2 · · · vn] and D be the diagonal matrix with diagonal entries λ1,

λ2, · · · , λn, i.e. D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

.

Then AP = A[v1 v2 · · · vn] = [Av1 Av2 · · · Avn] = [λ1v1 λ2v2 · · · λnvn]

and PD = [v1 v2 · · · vn]


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

 = [λ1v1 λ2v2 · · · λnvn].

This implies that AP = PD. Since P is invertible (because we assume v1,
v2, · · · , vn are independent), we have APP−1 = PDP−1, AI = PDP−1 and
A = PDP−1. Thus we have proved the following theorem.

Theorem 0.3 A n× n matrix is diagonizable if it has n independent eigen-
vectors. More precisely, Suppose Av1 = λ1v1, Av2 = λ2v2, · · · , Avn = λnvn.
Let P be a n× n matrix with columns v1, v2, · · · , vn, i.e. P = [v1 v2 · · · vn]
and D be the diagonal matrix with diagonal entries λ1, λ2, · · · , λn, i.e.

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

. Then we have A = PDP−1

To find eigenvalue and eigenvector:
1. Compute A− λI and det(A− λI).
2. Solve the characteristic polynomial det(A− λI) = 0.
3. For each eigenvalue, use row reduction to find a basis for Null(A− λI) =
{x|(A − λI)x = 0}. These vectors are the eigenvectors corresponding to
eigenvalue λ.

To diagonalize a n× n matrix A.
1. Find eigenvalues and eigenvectors.
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2. If there are n independent eigenvectors v1, · · · , vn with eigenvalues λ1, · · · ,

λn, then A = PDP−1 where P = [v1 v2 · · · vn] and D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

.

3. If we don’t have n independent eigenvectors then A is not diagonizable.

Example 2 a. Find the characteristic polynomial, eigenvalues and eigen-

vectors of

[
1 −2
−2 1

]
.

b. Diagonalize the matrix A if possible.
c. Find a formula for Ak.

Solution: 10 Compute A− λI =

[
1 −2
−2 1

]
− λ

[
1 0
0 1

]
=

[
1− λ −2
−2 1− λ

]
.

20 Compute det(A− λI) = det(

[
1− λ −2
−2 1− λ

]
) = (1− λ)2 − 4 = (1− λ)2 −

(−2)2 = λ2 − 2λ+ 1− 4 = λ2 − 2λ− 3 = (λ− 3)(λ+ 1).
30 Solve det(A − λI) = 0,i.e. (λ − 3)(λ + 1) = 0. So the eigenvalues are 3
and −1.

40When λ = 3, A−λI = A−3I =

[
1− 3 −2
−2 1− 3

]
=

[
−2 −2
−2 −2

]
∼
[
1 1
0 0

]
So

the solution of (A− 3I)x = 0 is x1 + x2 = 0 and x2 is free. Hence x1 = −x2.

So x =

[
x1

x2

]
=

[
−x2

x2

]
= x2

[
−1
1

]
. So

[
−1
1

]
is an eigenvector corresponding

to eigenvalue λ = 3.

50When λ = −1, A − λI = A − (−1)I = A + I =

[
1 + 1 −2
−2 1 + 1

]
=[

2 −2
−2 2

]
∼
[
1 −1
0 0

]
So the solution of (A−(−1)I)x = 0 is x1−x2 = 0 and

x2 is free. Hence x1 = x2. So x =

[
x2

x2

]
= x2

[
1
1

]
. So

[
1
1

]
is an eigenvector

corresponding to eigenvalue λ = −1.

60 So we have found that

[
−1
1

]
is an eigenvector corresponding to eigenvalue

λ = 3 and

[
1
1

]
is an eigenvector corresponding to eigenvalue λ = −1. Let
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P =

[
−1 1
1 1

]
and D =

[
3 0
0 −1

]
. Then we have A = PDP−1.

70 Ak = PDkP−1 = P (

[
3 0
0 −1

]
)kP−1 = P

[
3k 0
0 (−1)k

]
P−1. Since P =[

−1 1
1 1

]
, we have det(P ) = −2 and P−1 = 1

−2

[
1 −1
−1 −1

]
=

[
1
2

1
−2

1
−2

1
−2

]
.

Hence A =

[
−1 1
1 1

] [
3k 0
0 (−1)k

] [
1
2

1
−2

1
−2

1
−2

]
=

[
−1 1
1 1

][
3k

2
−3k

2

− (−1)k

2
− (−1)k

2

]
=[

−3k

2
− (−1)k

2
3k

2
− (−1)k

2
3k

2
− (−1)k

2
−3k

2
− (−1)k

2

]
.

Example 3 A =

−1 4 −2
−3 4 0
−3 1 3

.

a. Show that det(A− λI) = (1− λ)(2− λ)(3− λ).

b. Find the eigenvalues and eigenvectors of

−1 4 −2
−3 4 0
−3 1 3

.

c. Diagonalize the matrix A if possible.
d. Find a formula for Ak.

Solution: 10 A−λI =

−1 4 −2
−3 4 0
−3 1 3

−λ
1 0 0

0 1 0
0 0 1

 =

−1− λ 4 −2
−3 4− λ 0
−3 1 3− λ

.

20 Compute det(A − λI) = det(

−1− λ 4 −2
−3 4− λ 0
−3 1 3− λ

) = (−1 − λ)(4 −

λ)(3 − λ) + 0 + (−2)(−3) · 1 − (−2)(4 − λ)(−3) − 4(−3)(3 − λ) − 0 =
−12−5λ+6λ2−λ3 +6−24+6λ+36−12λ = 6−11λ+6λ2−λ3. Expanding
(1 − λ)(2 − λ)(3 − λ), we get (1 − λ)(2 − λ)(3 − λ) = 6 − 11λ + 6λ2 − λ3.
So det(A− λI) = (1− λ)(2− λ)(3− λ).
30 Solve det(A − λI) = 0,i.e. (1 − λ)(2 − λ)(3 − λ) = 0. So the eigenvalues
are 1 , 2 and 3.

40When λ = 1, A−λI = A−I =

−1− 1 4 −2
−3 4− 1 0
−3 1 3− 1

 =

−2 4 −2
−3 3 0
−3 1 2

 ∼
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(r1 := r1/(−2), r2 := r2/(−3))


1 −2 1

1 −1 0

−3 1 2

 ∼ (r2 := r2 − r1, r3 :=

r3 + 3r1)


1 −2 1

0 1 −1

0 −5 5

 ∼ (r3 := r3 + 5r2, r1 := r1 + 2r2)


1 0 −1

0 1 −1

0 0 0


So the solution of (A− I)x = 0 is x1 − x3 = 0 ,x2 − x3 = 0 and x3 are free.

Hence x1 = x3, x2 = x3, x3 = x3. So x =

x3

x3

x3

 = x3

1
1
1

. So

1
1
1

 is an

eigenvector corresponding to eigenvalue λ = 1.

50 When λ = 2, A−λI = A−2I =

−1− 2 4 −2
−3 4− 2 0
−3 1 3− 2

 =

−3 4 −2
−3 2 0
−3 1 1

 ∼
(r2 := r2 − r1, r3 := r3 − r1)

−3 4 −2
0 −2 2
0 −3 3

 ∼ (r2 := r2/(−2), r3 :=

r3 + 3r2)

−3 4 −2
0 1 −1
0 0 0

 ∼ (r1 := r1 − 4r2, r1 := r1 + 2r2)

−3 0 2
0 1 −1
0 0 0

 ∼
(r1 := r1/(−3))

1 0 −2/3
0 1 −1
0 0 0

 So the solution of (A− 2I)x = 0 is x1 = 2
3
x3

, x2 = x3 and x3 is free. So x =

2
3
x3

x3

x3

 = x3

2
3

1
1

. We can choose x3 = 3 So2
3
3

 is an eigenvector corresponding to eigenvalue λ = 2.

60 When λ = 3, A−λI = A−3I =

−1− 3 4 −2
−3 4− 3 0
−3 1 3− 3

 =

−4 4 −2
−3 1 0
−3 1 0

 ∼
(r1 := r1/(−4), r3 := r2/(−3), r3 := r3 − r2)

1 −1 0.5
1 −1

3
0

0 0 0

 ∼ (r2 := r2 −
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r1)

1 −1 0.5
0 2

3
−0.5

0 0 0

 ∼ (r1 := r1 − 3
2
r2)

1 −1 0.5
0 1 −0.75
0 0 0

 ∼ (r1 := r1 +

r2

1 0 −0.25
0 1 −0.75
0 0 0

 So the solution of (A − 3I)x = 0 is x1 = 0.25x3 , x2 =

0.75x3 and x3 is free. So x =

0.25x3

0.75x3

x3

 = x3

0.25
0.75

1

. We can choose x3 = 4

So 4 ·

0.25
0.75

1

 =

1
3
4

 is an eigenvector corresponding to eigenvalue λ = 3.

70 So we have found that

1
1
1

,

2
3
3

 and

1
3
4

 are eigenvectors correspond-

ing to eigenvalue λ = 1, λ = 2 and λ = 3

Let P =

1 2 1
1 3 3
1 3 4

 and D =

1 0 0
0 2 0
0 0 3

. Then we have A = PDP−1.

70 Ak = PDkP−1 = P (

1 0 0
0 2 0
0 0 3

)kP−1 = P

1 0 0
0 2k 0
0 0 3k

P−1. We can find

the formula for P−1 to simplify this expression. But let us just stop here.

Example 4 a. Find the characteristic polynomial, eigenvalues and eigen-

vectors of

 2 0 0
−1 3 1
−1 1 3

.

b. Diagonalize the matrix A if possible.
c. Find a formula for Ak.

Solution: 10 ComputeA−λI =

 2 0 0
−1 3 1
−1 1 3

−λ
1 0 0

0 1 0
0 0 1

 =

2− λ 0 0
−1 3− λ 1
−1 1 3− λ

.

20 Compute det(A− λI) = det(

2− λ 0 0
−1 3− λ 1
−1 1 3− λ

) = (2− λ)(3− λ)2 −

(2 − λ) = (2 − λ)((3 − λ)2 − 1) = (2 − λ)((3 − λ) − 1)((3 − λ) + 1) =
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(2− λ)(2− λ)(4− λ) = (2− λ)2(4− λ).
30 Solve det(A − λI) = 0,i.e. (2 − λ)2(4 − λ) = 0. So the eigenvalues are 2
and 4.

40When λ = 2, A− λI = A− 2I =

2− 2 0 0
−1 3− 2 1
−1 1 3− 2

 =

 0 0 0
−1 1 1
−1 1 1

 ∼1 −1 −1
0 0 0
0 0 0

 So the solution of (A − 2I)x = 0 is x1 − x2 − x3 = 0 ,x2 and

x3 are free. Hence x1 = x2 + x3. So x =

x2 + x3

x2

x3

 =

x2

x2

0

 +

x3

0
x3

 =

x2

1
1
0

+ x3

1
0
1

. So

1
1
0

 and

1
0
1

 are eigenvectors corresponding to eigen-

value λ = 2.

50 When λ = 4, A−λI = A−4I =

2− 4 0 0
−1 3− 4 1
−1 1 3− 4

 =

−2 0 0
−1 −1 1
−1 1 −1

 ∼
(r1 := r1/2) =

 1 0 0
−1 −1 1
−1 1 −1

 ∼ (r2 := r2+r1, r3 := r3+r1) =

1 0 0
0 −1 1
0 1 −1

 ∼
(r2 := −r2, r3 := r3 + r2) =

1 0 0
0 1 −1
0 0 0

 So the solution of (A − 4I)x = 0

is x1 = 0 ,x2 − x3 = 0 and x3 is free. Hence x1 = 0, x2 = x3. So

x =

 0
x3

x3

 = x3

0
1
1

. So

0
1
1

 is an eigenvector corresponding to eigen-

value λ = 4.

60 So we have found that

1
1
0

 and

1
0
1

 are eigenvectors corresponding to

eigenvalue λ = 2 and

0
1
1

 is an eigenvector corresponding to eigenvalue
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λ = 4 Let P =

1 1 0
1 0 1
0 1 1

 and D =

2 0 0
0 2 0
0 0 4

. Then we have A = PDP−1.

70 Ak = PDkP−1 = P (

2 0 0
0 2 0
0 0 4

)kP−1 = P

2k 0 0
0 2k 0
0 0 4k

P−1. We can find

the formula for P−1 to simplify this expression. But let us just stop here.
Not every matrix is diagonizable. The following is an example.

Example 5 a. Find the characteristic polynomial, eigenvalues and eigen-

vectors of

2 1 1
0 2 1
0 0 4

.

b. Diagonalize the matrix A if possible.

Solution: 10 ComputeA−λI =

2 1 1
0 2 1
0 0 4

−λ
1 0 0

0 1 0
0 0 1

 =

2− λ 1 1
0 2− λ 1
0 0 4− λ

.

20 Compute det(A− λI) = det(

2− λ 1 1
0 2− λ 1
0 0 4− λ

) = (2− λ)2(4− λ).

30 Solve det(A − λI) = 0,i.e. (2 − λ)2(4 − λ) = 0. So the eigenvalues are 2
and 4.

40When λ = 2, A − λI = A − 2I =

2− 2 1 1
0 2− 2 1
0 0 4− 2

 =

0 1 1
0 0 1
0 0 2

 ∼0 1 0
0 0 1
0 0 0

 So the solution of (A − 2I)x = 0 is x2 = 0 ,x3 = 0 and x1 is

free. So x =

x1

0
0

 = x1

1
0
0

. So

1
0
0

 is an eigenvector corresponding to

eigenvalue λ = 2.

50 When λ = 4, A−λI = A−4I =

2− 4 1 1
0 2− 4 1
0 0 4− 4

 =

−2 1 1
0 −2 1
0 0 0

 ∼
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(r2 := −r2/2) =

−2 1 1
0 1 −1

2

0 0 0

 ∼ (r1 := r2 − r1) =

−2 0 3
2

0 1 −1
2

0 0 0

 ∼ (r1 :=

−r1/2) =

1 0 −3
4

0 1 −1
2

0 0 0

 So the solution of (A − 4I)x = 0 is x1 − 3
4
x3 = 0

,x2 − 1
2
x3 = 0 and x3 is free. Hence x1 = 3

4
x3, x2 = 1

2
x3. So x =

3
4
x3

1
2
x3

x3

 =

x3

3
4
1
2

1

. So

3
4
1
2

1

 is an eigenvector corresponding to eigenvalue λ = 4.

60 So we have found that

1
0
0

 is an eigenvector corresponding to eigenvalue

λ = 2 and

3
4
1
2

1

 is an eigenvector corresponding to eigenvalue λ = 4. There-

fore we have only two eigenvectors for A. Thus A is not diagonizable. (We
need 3 eigenvectors to diagonalize a 3× 3 matrix.

1 Exponential of a matrix and characteristic

polynomial

Recall that ex = 1 + x+ x2

2!
+ · · · . We can define the exponential f a matrix

by the following.

Definition 1.1 The exponential of a n×n matrix A is denoted by eA which
is defined by eA =

∑∞
k=0

Ak

k!
= I +A+ A2

2!
+ A3

3!
+ · · · . We use the convention

that A0 = I and 0! = 1.
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If D is an diagonal matrix with D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

 then

eD

=I +D +
D2

2!
+
D3

3!
+ · · ·

=


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

+


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

+


λ2
1

2!
0 · · · 0

0
λ2
2

2!
· · · 0

...
...

...

0 0 · · · λ2
n

2!

+


λ3
1

3!
0 · · · 0

0
λ3
2

3!
· · · 0

...
...

...

0 0 · · · λ3
n

3!

+ · · ·

=


1 + λ1 +

λ2
1

2!
+

λ3
1

3!
+ · · · 0 · · · 0

0 1 + λ2 +
λ2
2

2!
+

λ3
2

3!
+ · · · · · · 0

...
...

...

0 0 · · · 1 + λn + λ2
n

2!
+ λ3

n

3!
+ · · ·



=


eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
...

0 0 · · · eλn


(1.1)

Thus we have the following theorem.

Theorem 1.1 Suppose D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

. Then eD =


eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
...

0 0 · · · eλn


If A is diagonizable with A = PDP−1 then eA = I + A + A2

2!
+ A3

3!
+ · · · =

I+PDP−1+ PD2P−1

2!
+ PD3P−1

3!
+· · · = P (I+D+D2

2!
+D3

3!
+· · · )P−1 = PeDP−1.

Thus we have the following theorem.
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Theorem 1.2 Suppose A = PDP−1 where D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

. Then

eA = P


eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
...

0 0 · · · eλn

P−1.

Example 6 Use the result in example 3 to find eA where A =

 2 0 0
−1 3 1
−1 1 3


Solution: From example 3, we have A = PDP−1 where P =

−1 1 0
1 0 1
0 1 1


and D =

2 0 0
0 2 0
0 0 4

. So eA = PeDP−1 = P

e2 0 0
0 e2 0
0 0 e4

P−1.

The last thing that we want to discuss is the characteristic polynomial
gives us a nice equation for A. Given a polynomial f(λ) = anλ

n+an−1λ
n−1 +

· · · + a1λ + a0. We define f(A) = anA
n + an−1A

n−1 + · · · + a1A + a0I. We
have the following interesting result.

Theorem 1.3 Let f(λ) = det(A− λI). Then f(A) = 0.

Example 7 Let A =

[
1 −2
−2 1

]
Recall that det(A− λI) = (λ− 3)(λ+ 1) =

λ2 − 2λ− 3. One can verify that A2 − 2A− 3I = 0
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