PRACTICEPROBLEMS

1. Let $A=\left[\begin{array}{rrrr}1 & 5 & -2 & 0 \\ -3 & 1 & 9 & -5 \\ 4 & -8 & -1 & 7\end{array}\right], \mathbf{p}=\left[\begin{array}{r}3 \\ -2 \\ 0 \\ -4\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{r}-7 \\ 9 \\ 0\end{array}\right]$. It can be shown that p is a solution of $A \mathbf{x}=\mathrm{b}$. Use this fact to exhibit b as a specific linear combination of the columns of A.
2. Let $A=\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right], \mathbf{u}=\left[\begin{array}{r}4 \\ -1\end{array}\right]$, and $\mathbf{v}=\left[\begin{array}{r}-3 \\ 5\end{array}\right]$. Verify Theorem $5(a)$ in this case by computing $A(\mathbf{u}+\mathbf{v})$ and $A \mathbf{u}+A \mathbf{v}$.

1.4 EXERCISES

Compute the products in Exercises 1-4 using (a) the definition, as in Example 1, and (b) the row-vector rule for computing Ax. If a product is undefined, explain why.

1. $\left[\begin{array}{rr}-4 & 2 \\ 1 & 6 \\ 0 & 1\end{array}\right]\left[\begin{array}{r}3 \\ -2 \\ 7\end{array}\right]$
2. $\left[\begin{array}{r}2 \\ 6 \\ -1\end{array}\right]\left[\begin{array}{r}5 \\ -1\end{array}\right]$
3. $\left[\begin{array}{rr}6 & 5 \\ -4 & -3 \\ 7 & 6\end{array}\right]\left[\begin{array}{r}2 \\ -3\end{array}\right]$
4. $\left[\begin{array}{rrr}8 & 3 & -4 \\ 5 & 1 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

In Exercises 5-8, use the definition of $A x$ to write the matrix equation as a vector equation, or vice versa.
5. $\left[\begin{array}{rrrr}5 & 1 & -8 & 4 \\ -2 & -7 & 3 & -5\end{array}\right]\left[\begin{array}{r}5 \\ -1 \\ 3 \\ -2\end{array}\right]=\left[\begin{array}{r}-8 \\ 16\end{array}\right]$
K. $\left.\begin{array}{r}\text { Win }\end{array} \begin{array}{rr}7 & -3 \\ 2 & 1 \\ 9 & -6 \\ -3 & 2\end{array}\right]\left[\begin{array}{l}-2 \\ -5\end{array}\right]=\left[\begin{array}{r}1 \\ -9 \\ 12 \\ -4\end{array}\right]$
7. $x_{1}\left[\begin{array}{r}4 \\ -1 \\ 7 \\ -4\end{array}\right]+x_{2}\left[\begin{array}{r}-5 \\ 3 \\ -5 \\ 1\end{array}\right]+x_{3}\left[\begin{array}{r}7 \\ -8 \\ 0 \\ 2\end{array}\right]=\left[\begin{array}{r}6 \\ -8 \\ 0 \\ -7\end{array}\right]$
8. $z_{1}\left[\begin{array}{r}4 \\ -2\end{array}\right]+z_{2}\left[\begin{array}{r}-4 \\ 5\end{array}\right]+z_{3}\left[\begin{array}{r}-5 \\ 4\end{array}\right]+z_{4}\left[\begin{array}{l}3 \\ 0\end{array}\right]=\left[\begin{array}{r}4 \\ 13\end{array}\right]$

In Exercises 9 and 10, write the system first as a vector equation and then as a matrix equation.
9. $3 x_{1}+x_{2}-5 x_{3}=9$ $x_{2}+4 x_{3}=0$
10. $8 x_{1}-x_{2}=4$
$5 x_{1}+4 x_{2}=1$
$x_{1}-3 x_{2}=2$

Given A and b in Exercises 11 and 12, write the augmented matrix for the linear system that corresponds to the matrix equation $A \mathbf{x}=\mathbf{b}$. Then solve the system and write the solution as a vector.
11. $A=\left[\begin{array}{rrr}1 & 2 & 4 \\ 0 & 1 & 5 \\ -2 & -4 & -3\end{array}\right], \mathbf{b}=\left[\begin{array}{r}-2 \\ 2 \\ 9\end{array}\right]$
12. $A=\left[\begin{array}{rrr}1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3\end{array}\right], \mathrm{b}=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$
13. Let $u=\left[\begin{array}{l}0 \\ 4 \\ 4\end{array}\right]$ and $A=\left[\begin{array}{rr}3 & -5 \\ -2 & 6 \\ 1 & 1\end{array}\right]$. Is \mathbf{u} in the plane \mathbb{R}^{3} spanned by the columns of A ? (See the figure.) Why or why not?

Where is \mathbf{u} ?
14. Let $\mathbf{u}=\left[\begin{array}{r}2 \\ -3 \\ 2\end{array}\right]$ and $A=\left[\begin{array}{rrr}5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0\end{array}\right]$. Is \mathbf{u} in the subset of \mathbb{R}^{3} spanned by the columns of A ? Why or why not? 15. Let $A=\left[\begin{array}{rr}2 & -1 \\ -6 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$. Show that the equation $A \mathbf{x}=\mathbf{b}$ does not have a solution for all possible \mathbf{b}, and describe the set of all b for which $A \boldsymbol{x}=\mathbf{b}$ does have a solution. 16. Repeat Exercise 15: $A=\left[\begin{array}{rrr}1 & -3 & -4 \\ -3 & 2 & 6 \\ 5 & -1 & -8\end{array}\right], \mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.

Exercises 17-20 refer to the matrices A and B below. Make appropriate calculations that justify your answers and mention an

$$
A=\left[\begin{array}{rrrr}
1 & 3 & 0 & 3 \\
-1 & -1 & -1 & 1 \\
0 & -4 & 2 & -8 \\
2 & 0 & 3 & -1
\end{array}\right] \quad B=\left[\begin{array}{rrrr}
1 & 3 & -2 & 2 \\
0 & 1 & 1 & -5 \\
1 & 2 & -3 & 7 \\
-2 & -8 & 2 & -1
\end{array}\right]
$$

17. How many rows of A contain a pivot position? Does the equation $A \mathbf{x}=b$ have a solution for each b in \mathbb{R}^{4} ?
18. Do the columns of B span \mathbb{R}^{4} ? Does the equation $B \mathbf{x}=\mathrm{y}$ have a solution for each y in \mathbb{R}^{4} ?
19. Can each vector in \mathbb{R}^{4} be written as a linear combination of the columns of the matrix A above? Do the columns of A span \mathbb{R}^{4} ?
20. Can every vector in \mathbb{R}^{4} be written as a linear combination of the columns of the matrix B above? Do the columns of B span \mathbb{R}^{3} ?
21. Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}0 \\ -1 \\ 0 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}1 \\ 0 \\ 0 \\ -1\end{array}\right]$.

Does $\left\{v_{1}, v_{2}, v_{3}\right\}$ span \mathbb{R}^{4} ? Why or why not?
22. Let $v_{1}=\left[\begin{array}{r}0 \\ 0 \\ -2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}0 \\ -3 \\ 8\end{array}\right], v_{3}=\left[\begin{array}{r}4 \\ -1 \\ -5\end{array}\right]$.

Does $\left\{v_{1}, v_{2}, v_{3}\right\}$ span \mathbb{R}^{3} ? Why or why not?
In Exercises 23 and 24, mark each statement True or False. Justify each answer.
23. a. The equation $A \mathbf{x}=\mathbf{b}$ is referred to as a vector equation.
b. A vector \mathbf{b} is a linear combination of the columns of a matrix A if and only if the equation $A \mathbf{x}=\mathbf{b}$ has at least one solution.
c. The equation $A x=b$ is consistent if the augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$ has a pivot position in every row.
d. The first entry in the product $A x$ is a sum of products.
e. If the columns of an $m \times n$ matrix A span \mathbb{R}^{m}, then the equation $A \mathbf{x}=\mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^{m}.
f. If A is an $m \times n$ matrix and if the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^{m}, then A cannot have a pivot position in every row.
24. a. Every matrix equation $A x=b$ corresponds to a vector equation with the same solution set.
b. Any linear combination of vectors can always be written in the form $A x$ for a suitable matrix A and vector x.
c. The solution set of a linear system whose augmented matrix is $\left[\begin{array}{llll}a_{1} & a_{2} & a_{3} & b\end{array}\right]$ is the same as the solution set of $A \mathbf{x}=\mathbf{b}$, if $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right]$.
d. If the equation $A x=b$ is inconsistent, then b is not in the set spanned by the columns of A.
e. If the augmented matrix $\left[\begin{array}{ll}A & b\end{array}\right]$ has a pivot position in every row, then the equation $A x=b$ is inconsistent.
f. If A is an $m \times n$ matrix whose columns do not span \mathbb{R}^{m}, then the equation $A \mathbf{x}=\mathbf{b}$ is inconsistent for some \mathbf{b} in \mathbb{R}^{m}.
25. Note that $\left[\begin{array}{rrr}4 & -3 & 1 \\ 5 & -2 & 5 \\ -6 & 2 & -3\end{array}\right]\left[\begin{array}{r}-3 \\ -1 \\ 2\end{array}\right]=\left[\begin{array}{c}-7 \\ -3 \\ 10\end{array}\right]$. Use this fact
(and no row operations) to find scalars c_{1}, c_{2}, c_{3} such that (and no row operations) to find scalars c_{1}, c_{2}, c_{3} such that $\left[\begin{array}{r}-7 \\ -3 \\ 10\end{array}\right]=c_{1}\left[\begin{array}{r}4 \\ 5 \\ -6\end{array}\right]+c_{2}\left[\begin{array}{r}-3 \\ -2 \\ 2\end{array}\right]+c_{3}\left[\begin{array}{r}1 \\ 5 \\ -3\end{array}\right]$.
26. Let $\mathbf{u}=\left[\begin{array}{l}7 \\ 2 \\ 5\end{array}\right], \mathrm{v}=\left[\begin{array}{l}3 \\ 1 \\ 3\end{array}\right]$, and $\mathrm{w}=\left[\begin{array}{l}6 \\ 1 \\ 0\end{array}\right]$. It can be shown that $3 \mathrm{u}-5 \mathrm{v}-\mathrm{w}=0$. Use this fact (and no row operations) to find x_{1} and x_{2} that satisfy the equation
$\left[\begin{array}{ll}7 & 3 \\ 2 & 1 \\ 5 & 3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}6 \\ 1 \\ 0\end{array}\right]$.
27. Let $\mathfrak{q}_{1}, \mathfrak{q}_{2}, \mathbf{q}_{3}$, and \mathbf{v} represent vectors in \mathbb{R}^{5}, and let x_{1}, x_{2}, and x_{3} denote scalars. Write the following vector equation as a matrix equation. Identify any symbols you choose to use.

$$
x_{1} \mathbf{q}_{1}+x_{2} \mathbf{q}_{2}+x_{3} \mathbf{q}_{3}=\mathbf{v}
$$

28. Rewrite the (numerical) matrix equation below in symbolic Rewrite the (numerical) matrix equation
form as a vector equation, using symbols v_{1}, v_{2}, \ldots for the
